Spaces:
Runtime error
Runtime error
WaterKnight
commited on
Commit
•
9ba5c76
1
Parent(s):
058960f
Code improvements.
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
from io import BytesIO
|
3 |
import requests
|
|
|
4 |
|
5 |
# Interface utilities
|
6 |
import gradio as gr
|
@@ -40,6 +41,8 @@ photo_ids = pd.read_csv("unsplash-dataset/photo_ids.csv")
|
|
40 |
photo_ids = list(photo_ids["photo_id"])
|
41 |
|
42 |
def image_from_text(text_input):
|
|
|
|
|
43 |
## Inference
|
44 |
with torch.no_grad():
|
45 |
inputs = tokenizer([text_input], padding=True, return_tensors="pt")
|
@@ -53,6 +56,9 @@ def image_from_text(text_input):
|
|
53 |
photo_id = photo_ids[idx]
|
54 |
photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
|
55 |
|
|
|
|
|
|
|
56 |
# Downlaod image
|
57 |
response = requests.get(photo_data["photo_image_url"] + "?w=640")
|
58 |
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
|
@@ -60,32 +66,40 @@ def image_from_text(text_input):
|
|
60 |
# Convert RGB to BGR
|
61 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
62 |
|
|
|
|
|
63 |
return open_cv_image
|
64 |
|
65 |
def inference(content, style):
|
|
|
|
|
|
|
66 |
result = stylepro_artistic.style_transfer(
|
67 |
images=[{
|
68 |
-
"content":
|
69 |
"styles": [cv2.imread(style.name)]
|
70 |
}])
|
|
|
|
|
71 |
return Image.fromarray(np.uint8(result[0]["data"])[:,:,::-1]).convert("RGB")
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
1 |
import os
|
2 |
from io import BytesIO
|
3 |
import requests
|
4 |
+
from datetime import datetime
|
5 |
|
6 |
# Interface utilities
|
7 |
import gradio as gr
|
|
|
41 |
photo_ids = list(photo_ids["photo_id"])
|
42 |
|
43 |
def image_from_text(text_input):
|
44 |
+
start=datetime.now()
|
45 |
+
|
46 |
## Inference
|
47 |
with torch.no_grad():
|
48 |
inputs = tokenizer([text_input], padding=True, return_tensors="pt")
|
|
|
56 |
photo_id = photo_ids[idx]
|
57 |
photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
|
58 |
|
59 |
+
print(f"Time spent at CLIP: {datetime.now()-start}")
|
60 |
+
|
61 |
+
start=datetime.now()
|
62 |
# Downlaod image
|
63 |
response = requests.get(photo_data["photo_image_url"] + "?w=640")
|
64 |
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
66 |
# Convert RGB to BGR
|
67 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
68 |
|
69 |
+
print(f"Time spent at Image request: {datetime.now()-start}")
|
70 |
+
|
71 |
return open_cv_image
|
72 |
|
73 |
def inference(content, style):
|
74 |
+
content_image = image_from_text(content)
|
75 |
+
start=datetime.now()
|
76 |
+
|
77 |
result = stylepro_artistic.style_transfer(
|
78 |
images=[{
|
79 |
+
"content": content_image,
|
80 |
"styles": [cv2.imread(style.name)]
|
81 |
}])
|
82 |
+
|
83 |
+
print(f"Time spent at Style Transfer: {datetime.now()-start}")
|
84 |
return Image.fromarray(np.uint8(result[0]["data"])[:,:,::-1]).convert("RGB")
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
title = "Neural Style Transfer"
|
88 |
+
description = "Gradio demo for Neural Style Transfer. To use it, simply enter the text for image content and upload style image. Read more at the links below."
|
89 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2003.07694'target='_blank'>Parameter-Free Style Projection for Arbitrary Style Transfer</a> | <a href='https://github.com/PaddlePaddle/PaddleHub' target='_blank'>Github Repo</a></br><a href='https://arxiv.org/abs/2103.00020'target='_blank'>Clip paper</a> | <a href='https://huggingface.co/transformers/model_doc/clip.html' target='_blank'>Hugging Face Clip Implementation</a></p>"
|
90 |
+
examples=[
|
91 |
+
["a cute kangaroo", "styles/starry.jpeg"],
|
92 |
+
["man holding beer", "styles/mona1.jpeg"],
|
93 |
+
]
|
94 |
+
interface = gr.Interface(inference,
|
95 |
+
inputs=[
|
96 |
+
gr.inputs.Textbox(lines=1, placeholder="Describe the content of the image", default="a cute kangaroo", label="Describe the image to which the style will be applied"),
|
97 |
+
gr.inputs.Image(type="file", label="Style to be applied"),
|
98 |
+
],
|
99 |
+
outputs=gr.outputs.Image(type="pil"),
|
100 |
+
enable_queue=True,
|
101 |
+
title=title,
|
102 |
+
description=description,
|
103 |
+
article=article,
|
104 |
+
examples=examples)
|
105 |
+
interface.launch()
|