ASR_arena / app.py
chinmayc3's picture
Added retry logic in fetch audio
c10a203
import base64
import io
import json
import os
import random
import tempfile
import time
import threading
from queue import Queue
import librosa
import numpy as np
import pandas as pd
import requests
import streamlit as st
from audio_recorder_streamlit import audio_recorder
import torchaudio
from dotenv import load_dotenv
from logger import logger
from utils import fs
from enums import SAVE_PATH, ELO_JSON_PATH, ELO_CSV_PATH, EMAIL_PATH, TEMP_DIR, NEW_TASK_URL,ARENA_PATH
load_dotenv()
result_queue = Queue()
random_df = pd.read_csv("random_audios.csv")
random_paths = random_df["path"].tolist()
def result_writer_thread():
result_writer = ResultWriter(SAVE_PATH)
while True:
result_input = result_queue.get()
result_writer.write_result(**result_input)
result_queue.task_done()
def create_files():
if not fs.exists(SAVE_PATH):
logger.info("Creating save file")
with fs.open(SAVE_PATH, 'wb') as f:
headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
]
df = pd.DataFrame(columns=headers)
df.to_csv(f, index=False)
if not fs.exists(ELO_JSON_PATH):
logger.info("Creating Elo json file")
with fs.open(ELO_JSON_PATH, 'w') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {model: 1000 for model in models}
json.dump(models, f)
if not fs.exists(ELO_CSV_PATH):
logger.info("Creating Elo csv file")
with fs.open(ELO_CSV_PATH, 'wb') as f:
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
models = {k:1000 for k in models}
df = pd.DataFrame(models,index=[0])
df.to_csv(f, index=False)
if not fs.exists(EMAIL_PATH):
logger.info("Creating email file")
with fs.open(EMAIL_PATH, 'wb') as f:
existing_content = ''
new_content = existing_content
with fs.open(EMAIL_PATH, 'w') as f:
f.write(new_content.encode('utf-8'))
def write_email(email):
if fs.exists(EMAIL_PATH):
with fs.open(EMAIL_PATH, 'rb') as f:
existing_content = f.read().decode('utf-8')
else:
existing_content = ''
new_content = existing_content + email + '\n'
with fs.open(EMAIL_PATH, 'wb') as f:
f.write(new_content.encode('utf-8'))
class ResultWriter:
def __init__(self, save_path):
self.save_path = save_path
self.headers = [
'email',
'path',
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration',
'sarvam_score','sarvam_appearance','sarvam_duration',
]
self.models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure','sarvam']
if not fs.exists(save_path):
print("CSV File not found in s3 bucket creating a new one",save_path)
with fs.open(save_path, 'wb') as f:
df = pd.DataFrame(columns=self.headers)
df.to_csv(f, index=False)
def write_result(self,
user_email,
audio_path,
option_1_duration_info,
option_2_duration_info,
winner_model=None,
loser_model=None,
both_preferred=False,
none_preferred=False
):
payload = {
"task":"write_result",
"payload":{
"winner_model":winner_model,
"loser_model":loser_model,
"both_preferred":both_preferred,
"none_preferred":none_preferred,
"user_email":user_email,
"audio_path":audio_path,
"option_1_duration_info":option_1_duration_info,
"option_2_duration_info":option_2_duration_info
}
}
send_task(payload)
def decode_audio_array(base64_string):
bytes_data = base64.b64decode(base64_string)
buffer = io.BytesIO(bytes_data)
audio_array = np.load(buffer)
return audio_array
def send_task(payload):
header = {
"Authorization": f"Bearer {os.getenv('CREATE_TASK_API_KEY')}"
}
if payload["task"] in ["fetch_audio","write_result"]:
response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600)
else:
response = requests.post(NEW_TASK_URL,json=payload,headers=header,timeout=600,stream=True)
try:
response = response.json()
except Exception as e:
logger.error("Error while sending task %s",e)
logger.error("response received %s",response.text)
if response.status_code == 413:
return "Recording too long, please try again"
return "error please try again"
if payload["task"] == "transcribe_with_fastapi":
return response["text"]
def fetch_audio():
num_tries = 3
iter_count = 0
while iter_count <= num_tries:
try:
filepath = random.choice(random_paths)
with fs.open(f"{ARENA_PATH}/{filepath}", 'rb') as f:
audio,sr = torchaudio.load(f)
audio = audio.numpy()
return audio,sr,filepath
except Exception:
iter_count += 1
return None,None,None
def encode_audio_array(audio_array):
buffer = io.BytesIO()
np.save(buffer, audio_array)
buffer.seek(0)
base64_bytes = base64.b64encode(buffer.read())
base64_string = base64_bytes.decode('utf-8')
return base64_string
def validate_uploaded_audio(uploaded_file):
"""
Validate uploaded audio file format and duration
Returns: (is_valid, error_message, audio_data, sample_rate)
"""
allowed_extensions = ['.wav', '.mp3', '.flac']
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
if file_extension not in allowed_extensions:
return False, f"Unsupported file format. Please upload {', '.join(allowed_extensions)} files only.", None, None
try:
audio_bytes = uploaded_file.read()
with tempfile.NamedTemporaryFile(delete=True, suffix=file_extension) as tmp_file:
tmp_file.write(audio_bytes)
temp_path = tmp_file.name
audio_data, sample_rate = librosa.load(temp_path, sr=None)
duration = len(audio_data) / sample_rate
if duration > 30:
return False, f"Audio duration ({duration:.1f}s) exceeds the 30-second limit. Please upload shorter audio.", None, None
return True, None, audio_data, sample_rate
except Exception as e:
return False, f"Error processing audio file: {str(e)}", None, None
def call_function(model_name):
if st.session_state.current_audio_type == "recorded":
y,_ = librosa.load(st.session_state.audio_path,sr=22050,mono=True)
encoded_array = encode_audio_array(y)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
elif st.session_state.current_audio_type == "uploaded":
array = st.session_state.audio['data']
sr = st.session_state.audio['sample_rate']
if sr != 22050:
array = librosa.resample(y=array, orig_sr=sr, target_sr=22050)
encoded_array = encode_audio_array(array)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
else:
sr = st.session_state.audio['sample_rate']
array = st.session_state.audio['data']
if sr != 22050:
array = librosa.resample(y=array,orig_sr=sr,target_sr=22050)
encoded_array = encode_audio_array(array)
payload = {
"task":"transcribe_with_fastapi",
"payload":{
"file_path":encoded_array,
"model_name":model_name,
"audio_b64":True
}}
transcript = send_task(payload)
return transcript
def transcribe_audio():
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure",'sarvam']
if st.session_state.model_1_selection == "Random":
model1_name = random.choice(models_list)
else:
model1_name = st.session_state.model_1_selection
if st.session_state.model_2_selection == "Random":
if st.session_state.model_1_selection == "Random":
available_models = [m for m in models_list if m != model1_name]
model2_name = random.choice(available_models)
else:
model2_name = random.choice(models_list)
else:
model2_name = st.session_state.model_2_selection
st.session_state.option_1_model_name = model1_name
st.session_state.option_2_model_name = model2_name
time_1 = time.time()
transcript1 = call_function(model1_name)
time_2 = time.time()
transcript2 = call_function(model2_name)
time_3 = time.time()
st.session_state.option_2_response_time = round(time_3 - time_2,3)
st.session_state.option_1_response_time = round(time_2 - time_1,3)
if transcript1 == "nan":
transcript1 = ""
if transcript2 == "nan":
transcript2 = ""
return transcript1, transcript2
def reset_state():
st.session_state.audio = None
st.session_state.current_audio_type = None
st.session_state.audio_path = ""
st.session_state.option_selected = False
st.session_state.transcribed = False
st.session_state.option_2_model_name = ""
st.session_state.option_1_model_name = ""
st.session_state.option_1 = ""
st.session_state.option_2 = ""
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
st.session_state.has_audio = False
def on_option_1_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose Option 1. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_2_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose Option 2. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_2_model_name,
"loser_model": st.session_state.option_1_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_both_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
st.session_state.option_2_model_name_state = f"πŸ‘‘ {st.session_state.option_2_model_name} πŸ‘‘"
st.session_state.option_1_model_name_state = f"πŸ‘‘ {st.session_state.option_1_model_name} πŸ‘‘"
st.session_state.choice = f"You chose Prefer both. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put(
{
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
"both_preferred": True
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_option_none_click():
if st.session_state.transcribed and not st.session_state.option_selected:
with st.spinner("πŸ’Ύ Saving and loading results... please wait"):
st.session_state.option_1_model_name_state = f"πŸ‘Ž {st.session_state.option_1_model_name} πŸ‘Ž"
st.session_state.option_2_model_name_state = f"πŸ‘Ž {st.session_state.option_2_model_name} πŸ‘Ž"
st.session_state.choice = f"You chose none option. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
result_queue.put({
"user_email": st.session_state.user_email,
"audio_path": st.session_state.audio_path,
"winner_model": st.session_state.option_1_model_name,
"loser_model": st.session_state.option_2_model_name,
"option_1_duration_info": [(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
"option_2_duration_info": [(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
"none_preferred": True
}
)
st.session_state.option_selected = True
st.session_state.disable_voting=True
def on_click_transcribe():
if st.session_state.has_audio:
with st.spinner("Transcribing audio... this may take some time"):
option_1_text, option_2_text = transcribe_audio(
)
st.session_state.option_1 = option_1_text if option_1_text else "* inaudible *"
st.session_state.option_2 = option_2_text if option_2_text else "* inaudible *"
st.session_state.transcribed = True
st.session_state.option_1_model_name_state = ""
st.session_state.option_2_model_name_state = ""
st.session_state.option_selected = None
st.session_state.recording=True
st.session_state.disable_voting=False
def on_random_click():
reset_state()
with st.spinner("Fetching random audio... please wait"):
array, sampling_rate, filepath = fetch_audio()
if filepath is None:
st.error("Error in fetching random audio please try uploading an audio or using the mic")
else:
st.session_state.audio = {"data":array,"sample_rate":sampling_rate,"format":"audio/wav"}
st.session_state.has_audio = True
st.session_state.current_audio_type = "random"
st.session_state.audio_path = filepath
st.session_state.option_selected = None
def on_reset_click():
reset_state()
writer_thread = threading.Thread(target=result_writer_thread)
writer_thread.start()
def main():
st.set_page_config(layout="wide",initial_sidebar_state="collapsed")
st.title("βš”οΈ Ori Speech-To-Text Arena βš”οΈ")
if "has_audio" not in st.session_state:
st.session_state.has_audio = False
if "audio" not in st.session_state:
st.session_state.audio = None
if "audio_path" not in st.session_state:
st.session_state.audio_path = ""
if "option_1" not in st.session_state:
st.session_state.option_1 = ""
if "option_2" not in st.session_state:
st.session_state.option_2 = ""
if "transcribed" not in st.session_state:
st.session_state.transcribed = False
if "option_1_model_name_state" not in st.session_state:
st.session_state.option_1_model_name_state = ""
if "option_1_model_name" not in st.session_state:
st.session_state.option_1_model_name = ""
if "option_2_model_name" not in st.session_state:
st.session_state.option_2_model_name = ""
if "option_2_model_name_state" not in st.session_state:
st.session_state.option_2_model_name_state = ""
if "user_email" not in st.session_state:
st.session_state.user_email = ""
if "recording" not in st.session_state:
st.session_state.recording = True
if "disable_voting" not in st.session_state:
st.session_state.disable_voting = True
if "model_1_selection" not in st.session_state:
st.session_state.model_1_selection = "Random"
if "model_2_selection" not in st.session_state:
st.session_state.model_2_selection = "Random"
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
st.markdown("### Record Audio")
with st.container():
audio_bytes = audio_recorder(
text="Click microphone to start/stop recording",
pause_threshold=3,
icon_size="2x",
key="audio_recorder",
sample_rate=16_000
)
if audio_bytes and audio_bytes != st.session_state.get('last_recorded_audio'):
reset_state()
st.session_state.last_recorded_audio = audio_bytes
st.session_state.audio = {"data":audio_bytes,"format":"audio/wav"}
st.session_state.current_audio_type = "recorded"
st.session_state.has_audio = True
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file.write(audio_bytes)
os.makedirs(TEMP_DIR, exist_ok=True)
st.session_state.audio_path = tmp_file.name
st.session_state.option_selected = None
st.toast("Audio recorded successfully",icon="🎀")
st.session_state.recording = False
with col2:
st.markdown("### Random Audio Example")
with st.container():
st.button("🎲 Select Random Audio",on_click=on_random_click,key="random_btn")
st.session_state.recording = False
with col3:
st.markdown("### Upload Audio File")
with st.container():
uploaded_file = st.file_uploader(
"Choose an audio file",
type=['wav', 'mp3', 'flac'],
key="audio_uploader",
help="Upload .wav, .mp3, or .flac files (max 30 seconds)"
)
if uploaded_file is not None:
if uploaded_file != st.session_state.get('last_uploaded_file'):
st.session_state.last_uploaded_file = uploaded_file
with st.spinner("Processing uploaded audio..."):
is_valid, error_msg, audio_data, sample_rate = validate_uploaded_audio(uploaded_file)
if is_valid:
reset_state()
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
temp_path = tmp_file.name
st.session_state.audio = {
"data": audio_data,
"sample_rate": sample_rate,
"format": "audio/wav"
}
st.session_state.current_audio_type = "uploaded"
st.session_state.has_audio = True
st.session_state.audio_path = temp_path
st.session_state.option_selected = None
st.session_state.recording = False
duration = len(audio_data) / sample_rate
st.success(f"βœ… Audio uploaded successfully! Duration: {duration:.1f}s")
else:
st.error(f"❌ {error_msg}")
if st.session_state.has_audio:
st.audio(**st.session_state.audio)
st.markdown("### Model Selection")
col_model1, col_model2 = st.columns(2)
models_list = ["Random", "Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime", "azure","sarvam"]
with col_model1:
st.selectbox(
"Model 1:",
options=models_list,
index=0,
key="model_1_selection"
)
with col_model2:
st.selectbox(
"Model 2:",
options=models_list,
index=0,
key="model_2_selection"
)
with st.container():
st.button("πŸ“ Transcribe Audio",on_click=on_click_transcribe,use_container_width=True,key="transcribe_btn",disabled=st.session_state.recording)
text_containers = st.columns([1, 1])
name_containers = st.columns([1, 1])
with text_containers[0]:
st.text_area("Option 1", value=st.session_state.option_1, height=300)
with text_containers[1]:
st.text_area("Option 2", value=st.session_state.option_2, height=300)
with name_containers[0]:
if st.session_state.option_1_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_1_model_name_state}</div>", unsafe_allow_html=True)
with name_containers[1]:
if st.session_state.option_2_model_name_state:
st.markdown(f"<div style='text-align: center'>{st.session_state.option_2_model_name_state}</div>", unsafe_allow_html=True)
c1, c2, c3, c4 = st.columns(4)
with c1:
st.button("Prefer Option 1",on_click=on_option_1_click,key="option1_btn",disabled=st.session_state.disable_voting)
with c2:
st.button("Prefer Option 2",on_click=on_option_2_click,key="option2_btn",disabled=st.session_state.disable_voting)
with c3:
st.button("Prefer Both",on_click=on_option_both_click,key="both_btn",disabled=st.session_state.disable_voting)
with c4:
st.button("Prefer None",on_click=on_option_none_click,key="none_btn",disabled=st.session_state.disable_voting)
with st.container():
st.button("New Match",on_click=on_reset_click,key="reset_btn",use_container_width=True)
INSTR = """
## Instructions:
* Record audio to recognise speech, upload an audio file, or press 🎲 for random Audio.
* Optionally select specific models using the Model 1 and Model 2 dropdowns (default is Random).
* Click on transcribe audio button to commence the transcription process.
* Read the two options one after the other while listening to the audio.
* Vote on which transcript you prefer.
* Note:
* Model names are revealed after the vote is cast.
* Currently Hindi and English are supported, and
the results for Hindi will be in Hinglish (Hindi in Latin script)
* It may take up to 30-60 seconds for speech recognition in some cases.
* Uploaded audio files must be .wav, .mp3, or .flac format and under 30 seconds duration.
""".strip()
st.markdown(INSTR)
create_files()
main()