|  | import os, sys, traceback | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n_part = int(sys.argv[2]) | 
					
						
						|  | i_part = int(sys.argv[3]) | 
					
						
						|  | if len(sys.argv) == 5: | 
					
						
						|  | exp_dir = sys.argv[4] | 
					
						
						|  | version = sys.argv[5] | 
					
						
						|  | else: | 
					
						
						|  | i_gpu = sys.argv[4] | 
					
						
						|  | exp_dir = sys.argv[5] | 
					
						
						|  | os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) | 
					
						
						|  | version = sys.argv[6] | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import soundfile as sf | 
					
						
						|  | import numpy as np | 
					
						
						|  | from fairseq import checkpoint_utils | 
					
						
						|  |  | 
					
						
						|  | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
						|  |  | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | device = "cuda" | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | device = "mps" | 
					
						
						|  | else: | 
					
						
						|  | device = "cpu" | 
					
						
						|  |  | 
					
						
						|  | f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def printt(strr): | 
					
						
						|  | print(strr) | 
					
						
						|  | f.write("%s\n" % strr) | 
					
						
						|  | f.flush() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | printt(sys.argv) | 
					
						
						|  | model_path = "hubert_base.pt" | 
					
						
						|  |  | 
					
						
						|  | printt(exp_dir) | 
					
						
						|  | wavPath = "%s/1_16k_wavs" % exp_dir | 
					
						
						|  | outPath = ( | 
					
						
						|  | "%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir | 
					
						
						|  | ) | 
					
						
						|  | os.makedirs(outPath, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def readwave(wav_path, normalize=False): | 
					
						
						|  | wav, sr = sf.read(wav_path) | 
					
						
						|  | assert sr == 16000 | 
					
						
						|  | feats = torch.from_numpy(wav).float() | 
					
						
						|  | if feats.dim() == 2: | 
					
						
						|  | feats = feats.mean(-1) | 
					
						
						|  | assert feats.dim() == 1, feats.dim() | 
					
						
						|  | if normalize: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | feats = F.layer_norm(feats, feats.shape) | 
					
						
						|  | feats = feats.view(1, -1) | 
					
						
						|  | return feats | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | printt("load model(s) from {}".format(model_path)) | 
					
						
						|  |  | 
					
						
						|  | if os.access(model_path, os.F_OK) == False: | 
					
						
						|  | printt( | 
					
						
						|  | "Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main" | 
					
						
						|  | % model_path | 
					
						
						|  | ) | 
					
						
						|  | exit(0) | 
					
						
						|  | models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | 
					
						
						|  | [model_path], | 
					
						
						|  | suffix="", | 
					
						
						|  | ) | 
					
						
						|  | model = models[0] | 
					
						
						|  | model = model.to(device) | 
					
						
						|  | printt("move model to %s" % device) | 
					
						
						|  | if device not in ["mps", "cpu"]: | 
					
						
						|  | model = model.half() | 
					
						
						|  | model.eval() | 
					
						
						|  |  | 
					
						
						|  | todo = sorted(list(os.listdir(wavPath)))[i_part::n_part] | 
					
						
						|  | n = max(1, len(todo) // 10) | 
					
						
						|  | if len(todo) == 0: | 
					
						
						|  | printt("no-feature-todo") | 
					
						
						|  | else: | 
					
						
						|  | printt("all-feature-%s" % len(todo)) | 
					
						
						|  | for idx, file in enumerate(todo): | 
					
						
						|  | try: | 
					
						
						|  | if file.endswith(".wav"): | 
					
						
						|  | wav_path = "%s/%s" % (wavPath, file) | 
					
						
						|  | out_path = "%s/%s" % (outPath, file.replace("wav", "npy")) | 
					
						
						|  |  | 
					
						
						|  | if os.path.exists(out_path): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | feats = readwave(wav_path, normalize=saved_cfg.task.normalize) | 
					
						
						|  | padding_mask = torch.BoolTensor(feats.shape).fill_(False) | 
					
						
						|  | inputs = { | 
					
						
						|  | "source": feats.half().to(device) | 
					
						
						|  | if device not in ["mps", "cpu"] | 
					
						
						|  | else feats.to(device), | 
					
						
						|  | "padding_mask": padding_mask.to(device), | 
					
						
						|  | "output_layer": 9 if version == "v1" else 12, | 
					
						
						|  | } | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model.extract_features(**inputs) | 
					
						
						|  | feats = ( | 
					
						
						|  | model.final_proj(logits[0]) if version == "v1" else logits[0] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | feats = feats.squeeze(0).float().cpu().numpy() | 
					
						
						|  | if np.isnan(feats).sum() == 0: | 
					
						
						|  | np.save(out_path, feats, allow_pickle=False) | 
					
						
						|  | else: | 
					
						
						|  | printt("%s-contains nan" % file) | 
					
						
						|  | if idx % n == 0: | 
					
						
						|  | printt("now-%s,all-%s,%s,%s" % (idx, len(todo), file, feats.shape)) | 
					
						
						|  | except: | 
					
						
						|  | printt(traceback.format_exc()) | 
					
						
						|  | printt("all-feature-done") | 
					
						
						|  |  |