File size: 3,916 Bytes
c3a809c
f673b98
 
 
3517ef3
40b3e9c
3517ef3
f673b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41934b
 
 
 
f673b98
 
 
 
 
 
 
 
 
 
 
 
 
 
bc2361e
f673b98
 
 
3517ef3
f673b98
 
bc2361e
f673b98
bc2361e
f673b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3517ef3
 
f673b98
 
3517ef3
f673b98
 
 
 
3517ef3
f673b98
 
 
 
 
3517ef3
f673b98
 
3517ef3
f673b98
3517ef3
f673b98
3517ef3
f673b98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import io
import json
import base64
import time
import torch
from PIL import Image
from typing import Optional
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import Response
from fastapi.middleware.cors import CORSMiddleware

from safetensors.torch import save_file
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora

# Define paths
base_path = "black-forest-labs/FLUX.1-dev"
lora_base_path = "./models"

# Initialize the model
print("Loading model...")
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe.transformer = transformer
pipe.to("cuda")
print("Model loaded successfully!")

# Function to clear cache
def clear_cache(transformer):
    for name, attn_processor in transformer.attn_processors.items():
        attn_processor.bank_kv.clear()

# Create FastAPI app
app = FastAPI(title="Ghibli Image Generator API", 
              description="Convert images to Ghibli Studio style using EasyControl")

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/")
def myfunc():
    return {"status":"running"}

# Health check endpoint
@app.get("/health")
async def health_check():
    return {"status": "healthy", "model": "loaded"}

# Main image conversion endpoint
@app.post("/generate-ghibli")
async def generate_ghibli(
    file: UploadFile = File(...),
    prompt: str = Form("Ghibli Studio style, Charming hand-drawn anime-style illustration"),
    height: int = Form(768),
    width: int = Form(768),
    seed: int = Form(42)
):
    try:
        # Validate input image
        if not file.content_type.startswith("image/"):
            raise HTTPException(status_code=400, detail="File must be an image")
        
        # Read and validate image
        image_data = await file.read()
        try:
            spatial_img = Image.open(io.BytesIO(image_data))
        except Exception as e:
            raise HTTPException(status_code=400, detail=f"Invalid image: {str(e)}")
        
        # Validate dimensions
        if height < 256 or height > 1024 or width < 256 or width > 1024:
            raise HTTPException(status_code=400, detail="Dimensions must be between 256 and 1024")
        
        # Configure LoRA
        lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
        set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
        
        # Generate image
        with torch.cuda.amp.autocast():
            output = pipe(
                prompt,
                height=height,
                width=width,
                guidance_scale=3.5,
                num_inference_steps=25,
                max_sequence_length=512,
                generator=torch.Generator("cpu").manual_seed(seed), 
                subject_images=[],
                spatial_images=[spatial_img],
                cond_size=512,
            ).images[0]
        
        # Clear cache
        clear_cache(pipe.transformer)
        
        # Convert output to bytes
        img_byte_arr = io.BytesIO()
        output.save(img_byte_arr, format='PNG')
        img_byte_arr.seek(0)
        
        # Return the image directly
        return Response(
            content=img_byte_arr.getvalue(), 
            media_type="image/png"
        )
        
    except HTTPException as e:
        raise e
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")

# Run the API with uvicorn
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=7860)