Razzaqi3143's picture
Create app.py
7697c7f verified
import gradio as gr
import joblib
import numpy as np
# Load the saved model and scaler
model = joblib.load('best_random_forest_model.pkl')
scaler = joblib.load('scaler.pkl')
def predict_house_price(feature1, feature2, feature3, feature4, feature5):
# Combine all features into a single list
features = [feature1, feature2, feature3, feature4, feature5]
# Scale the input features using the saved scaler
scaled_features = scaler.transform([features])
# Make predictions using the loaded model
prediction = model.predict(scaled_features)
return f"Predicted House Price: ${prediction[0]:,.2f}"
# Create the Gradio interface
interface = gr.Interface(
fn=predict_house_price,
inputs=[
gr.Number(label="Feature 1: (e.g., Average number of rooms per dwelling)"),
gr.Number(label="Feature 2: (e.g., Total rooms)"),
gr.Number(label="Feature 3: (e.g., Total bedrooms)"),
gr.Number(label="Feature 4: (e.g., Median age of houses)"),
gr.Number(label="Feature 5: (e.g., Population)"),
],
outputs=gr.Textbox(label="Predicted House Price"),
description="Predict California house prices based on input features.",
title="California House Price Predictor"
)
# Launch the Gradio app
interface.launch()