Update test.py
Browse files
test.py
CHANGED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
''''
|
2 |
+
Author : Rupesh Garsondiya
|
3 |
+
github : @Rupeshgarsondiya
|
4 |
+
Organization : L.J University
|
5 |
+
'''
|
6 |
+
|
7 |
+
import time
|
8 |
+
import streamlit as st
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
+
from train import *
|
13 |
+
|
14 |
+
|
15 |
+
class test :
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
pass
|
19 |
+
|
20 |
+
def predict_data(self):
|
21 |
+
|
22 |
+
st.sidebar.title("Select Parameter ")
|
23 |
+
mt = Model_Train()
|
24 |
+
S_algo,Pipeline = mt.train_model()
|
25 |
+
df = None
|
26 |
+
options = ["Google Pixel 5", "OnePlus 9", "Samsung Galaxy S21", "Xiaomi Mi 11",'iPhone 12']
|
27 |
+
|
28 |
+
selected_option = st.sidebar.selectbox("Select phone model :", options)
|
29 |
+
|
30 |
+
if selected_option in options:
|
31 |
+
encoded_model = [1 if i == selected_option else 0 for i in options]
|
32 |
+
df = pd.DataFrame([encoded_model], columns=options)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
options1 = ["Android",'IOS']
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
if selected_option =='iPhone 12':
|
42 |
+
selected_option1 = st.sidebar.selectbox("Select OS :", 'IOS')
|
43 |
+
encoded_os = [0,1]
|
44 |
+
else :
|
45 |
+
encoded_os = [1,0]
|
46 |
+
selected_option1 = st.sidebar.selectbox("Select OS :", 'Android')
|
47 |
+
df[options1] = encoded_os
|
48 |
+
|
49 |
+
|
50 |
+
options2 = ['Female','Male']
|
51 |
+
selected_option2 = st.sidebar.radio("Select Gender :", options2)
|
52 |
+
encoded_gender = [1 if i == selected_option2 else 0 for i in options2]
|
53 |
+
df[options2] = encoded_gender
|
54 |
+
|
55 |
+
|
56 |
+
app_time = st.sidebar.number_input('Enter app time : ',min_value=0.0,max_value=24.0,value=0.0)
|
57 |
+
df['App_Time(hours/day)'] = app_time
|
58 |
+
|
59 |
+
|
60 |
+
screen_time = st.sidebar.number_input('Enter your screen time : ',min_value=0.0,max_value=24.0,value=0.0)
|
61 |
+
df['screen_Time(hours/day)'] = screen_time
|
62 |
+
|
63 |
+
|
64 |
+
battary = st.sidebar.number_input('Enter battary drain(mAh) : ',min_value=100.0,max_value=6000.0,value=100.0)
|
65 |
+
df['Battery_Drain(mAh)'] = battary
|
66 |
+
|
67 |
+
|
68 |
+
no_app = st.sidebar.number_input('Enter number of apps installed : ',min_value=5.0,max_value=50.0,value=5.0)
|
69 |
+
df['Installed_app'] = no_app
|
70 |
+
|
71 |
+
|
72 |
+
data_use = st.sidebar.number_input('Enter data usage (GB) : ',min_value=0.0,max_value=10.0,value=0.0)
|
73 |
+
df['Data_Usage(GB)'] = data_use
|
74 |
+
|
75 |
+
|
76 |
+
age = st.sidebar.number_input('Enter your age : ',min_value=15.0,max_value=100.0,value=15.0)
|
77 |
+
df['Age'] = age
|
78 |
+
|
79 |
+
if st.button("Submit"):
|
80 |
+
st.write("Processing...")
|
81 |
+
time.sleep(2)
|
82 |
+
prediction = S_algo.predict(df)
|
83 |
+
if prediction==1:
|
84 |
+
|
85 |
+
st.write('Output : Occasional Users')
|
86 |
+
elif prediction==2:
|
87 |
+
st.write('Output : Casual Users ')
|
88 |
+
elif prediction==3:
|
89 |
+
st.write('Output : content consumer : ')
|
90 |
+
elif prediction==4:
|
91 |
+
st.write('Output : Social Media Enthusiasts')
|
92 |
+
else :
|
93 |
+
st.write('Output : Power Users')
|