Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Gradio demo for text customization with Calligrapher (the reference is uploaded by the user), | |
which supports multilingual text image customization. | |
Acknowledgement: Supported by TextFLUX: https://github.com/yyyyyxie/textflux. | |
""" | |
import os | |
import json | |
import gradio as gr | |
import numpy as np | |
from datetime import datetime | |
import torch | |
from PIL import Image | |
from pipeline_calligrapher import CalligrapherPipeline | |
from models.calligrapher import Calligrapher | |
from models.transformer_flux_inpainting import FluxTransformer2DModel | |
from utils import process_gradio_source, get_bbox_from_mask, crop_image_from_bb, resize_img_and_pad | |
from utils_multilingual import run_multilingual_inference | |
# Global settings. | |
with open(os.path.join(os.path.dirname(__file__), 'path_dict.json'), 'r') as f: | |
path_dict = json.load(f) | |
SAVE_DIR = path_dict['gradio_save_dir'] | |
os.environ["GRADIO_TEMP_DIR"] = path_dict['gradio_temp_dir'] | |
os.environ['TMPDIR'] = path_dict['gradio_temp_dir'] | |
# Function of loading pre-trained models. | |
def load_models(): | |
base_model_path = path_dict['base_model_path'] | |
image_encoder_path = path_dict['image_encoder_path'] | |
calligrapher_path = path_dict['calligrapher_path'] | |
textflux_path = path_dict['textflux_path'] | |
transformer = FluxTransformer2DModel.from_pretrained(base_model_path, subfolder="transformer", | |
torch_dtype=torch.bfloat16) | |
# Load textflux lora weights. | |
state_dict, network_alphas = CalligrapherPipeline.lora_state_dict( | |
pretrained_model_name_or_path_or_dict=textflux_path, | |
return_alphas=True | |
) | |
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
if not is_correct_format: | |
raise ValueError("Invalid LoRA checkpoint!") | |
CalligrapherPipeline.load_lora_into_transformer( | |
state_dict=state_dict, | |
network_alphas=network_alphas, | |
transformer=transformer, | |
) | |
pipe = CalligrapherPipeline.from_pretrained(base_model_path, transformer=transformer, | |
torch_dtype=torch.bfloat16).to("cuda") | |
model = Calligrapher(pipe, image_encoder_path, calligrapher_path, device="cuda", num_tokens=128) | |
return model | |
# Init models. | |
model = load_models() | |
print('Model loaded!') | |
def process_and_generate(editor_component, reference_image, prompt, height, width, | |
scale, steps=50, seed=42, num_images=1): | |
print('Begin processing!') | |
# Job directory. | |
job_name = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
job_dir = os.path.join(SAVE_DIR, job_name) | |
os.makedirs(job_dir, exist_ok=True) | |
# Get source, mask, and cropped images from gr.ImageEditor. | |
source_image, mask_image, cropped_image = process_gradio_source(editor_component) | |
source_image.save(os.path.join(job_dir, 'source_image.png')) | |
mask_image.save(os.path.join(job_dir, 'mask_image.png')) | |
cropped_image.save(os.path.join(job_dir, 'cropped_image.png')) | |
# Resize source and mask. | |
source_image = source_image.resize((width, height)) | |
mask_image = mask_image.resize((width, height), Image.NEAREST) | |
mask_np = np.array(mask_image) | |
mask_np[mask_np > 0] = 255 | |
mask_image = Image.fromarray(mask_np.astype(np.uint8)) | |
if reference_image is None: | |
# If self-inpaint (no input ref): (1) get bounding box from the mask and (2) perform cropping to get the ref image. | |
tl, br = get_bbox_from_mask(mask_image) | |
# Convert irregularly shaped masks into rectangles. | |
reference_image = crop_image_from_bb(source_image, tl, br) | |
# Raw reference image before resizing. | |
reference_image.save(os.path.join(job_dir, 'reference_image_raw.png')) | |
reference_image_to_encoder = resize_img_and_pad(reference_image, target_size=(512, 512)) | |
reference_image_to_encoder.save(os.path.join(job_dir, 'reference_to_encoder.png')) | |
all_generated_images = run_multilingual_inference(model, source_image, mask_image, reference_image_to_encoder, | |
prompt, num_steps=steps, seed=seed, num_images=num_images) | |
vis_all_generated_images = [] | |
for i in range(len(all_generated_images)): | |
res = all_generated_images[i] | |
res_vis = res.crop((source_image.width, 0, res.width, res.height)) | |
mask_vis = mask_image | |
res_vis.save(os.path.join(job_dir, f'result_{i}.png')) | |
vis_all_generated_images.append((res_vis, f"Generated #{i + 1} (Seed: {seed + i})")) | |
return mask_vis, reference_image_to_encoder, vis_all_generated_images | |
# Main gradio codes. | |
with gr.Blocks(theme="default", css=".image-editor img {max-width: 70%; height: 70%;}") as demo: | |
gr.Markdown( | |
""" | |
# 🖌️ Calligrapher: Freestyle Text Image Customization (Multilingual) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
gr.Markdown("### 🎨 Image Editing Panel") | |
editor_component = gr.ImageEditor( | |
label="Upload or Draw", | |
type="pil", | |
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"), | |
layers=True, | |
interactive=True, | |
) | |
gr.Markdown("### 📤 Output Result") | |
gallery = gr.Gallery(label="🖼️ Result Gallery") | |
gr.Markdown( | |
"""<br> | |
### ✨User Tips: | |
1. **Quality of multilingual generation.** This implementation strategy combines Calligrapher with the fine-tuned base model (textflux) without additional fine-tuning, please temper expectations regarding output quality. | |
2. **Speed vs Quality Trade-off.** Use fewer steps (e.g., 10-step which takes ~4s/image on a single A6000 GPU) for faster generation, but quality may be lower. | |
3. **Inpaint Position Freedom.** Inpainting positions are flexible - they don't necessarily need to match the original text locations in the input image. | |
4. **Iterative Editing.** Drag outputs from the gallery to the Image Editing Panel (clean the Editing Panel first) for quick refinements. | |
5. **Mask Optimization.** Adjust mask size/aspect ratio to match your desired content. The model tends to fill the masks, and harmonizes the generation with background in terms of color and lighting. | |
6. **Reference Image Tip.** White-background references improve style consistency - the encoder also considers background context of the given reference image. | |
7. **Resolution Balance.** Very high-resolution generation sometimes triggers spelling errors. 512/768px are recommended considering the model is trained under the resolution of 512. | |
""" | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("### ⚙️Settings") | |
reference_image = gr.Image( | |
label="🧩 Reference Image (skip this if self-reference)", | |
sources=["upload"], | |
type="pil", | |
) | |
prompt = gr.Textbox( | |
label="📝 Prompt", | |
placeholder="你好", | |
value="你好" | |
) | |
with gr.Accordion("🔧 Additional Settings", open=True): | |
with gr.Row(): | |
height = gr.Number(label="Height", value=512, precision=0) | |
width = gr.Number(label="Width", value=512, precision=0) | |
scale = gr.Slider(0.0, 2.0, 1.0, step=0.1, value=1.0, label="🎚️ Strength") | |
steps = gr.Slider(1, 100, 30, step=1, label="🔁 Steps") | |
with gr.Row(): | |
seed = gr.Number(label="🎲 Seed", value=56, precision=0) | |
num_images = gr.Slider(1, 16, 2, step=1, label="🖼️ Sample Amount") | |
run_btn = gr.Button("🚀 Run", variant="primary") | |
mask_output = gr.Image(label="🟩 Mask Demo") | |
reference_demo = gr.Image(label="🧩 Reference Demo") | |
# Run button event. | |
run_btn.click( | |
fn=process_and_generate, | |
inputs=[ | |
editor_component, | |
reference_image, | |
prompt, | |
height, | |
width, | |
scale, | |
steps, | |
seed, | |
num_images | |
], | |
outputs=[ | |
mask_output, | |
reference_demo, | |
gallery | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=1234, share=False) | |