Update app.py
#1
by
Dddixyy
- opened
app.py
CHANGED
@@ -1,100 +1,122 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
def convert_one_channel(
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
if len(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
st.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
st.image(
|
65 |
-
if st.button('Example
|
66 |
-
image_file=examples[
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
|
8 |
+
# Use st.cache_resource to load the model only once, preventing memory errors.
|
9 |
+
@st.cache_resource
|
10 |
+
def load_keras_model():
|
11 |
+
"""Load the pre-trained Keras model from Hugging Face Hub and cache it."""
|
12 |
+
try:
|
13 |
+
# The model will be downloaded from the Hub and cached.
|
14 |
+
model = from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
|
15 |
+
return model
|
16 |
+
except Exception as e:
|
17 |
+
# If model loading fails, show an error and return None.
|
18 |
+
st.error(f"Error loading the model: {e}")
|
19 |
+
return None
|
20 |
+
|
21 |
+
# --- Helper Functions ---
|
22 |
+
def load_image(image_file):
|
23 |
+
"""Loads an image from a file path or uploaded file object."""
|
24 |
+
img = Image.open(image_file)
|
25 |
+
return img
|
26 |
+
|
27 |
+
def convert_one_channel(img_array):
|
28 |
+
"""Ensure the image is single-channel (grayscale)."""
|
29 |
+
# If image has 3 channels (like BGR or RGB), convert to grayscale.
|
30 |
+
if len(img_array.shape) > 2 and img_array.shape[2] > 1:
|
31 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
|
32 |
+
return img_array
|
33 |
+
|
34 |
+
def convert_rgb(img_array):
|
35 |
+
"""Ensure the image is 3-channel (RGB) for drawing contours."""
|
36 |
+
# If image is grayscale, convert to RGB to draw colored contours.
|
37 |
+
if len(img_array.shape) == 2:
|
38 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
|
39 |
+
return img_array
|
40 |
+
|
41 |
+
# --- Streamlit App Layout ---
|
42 |
+
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
|
43 |
+
|
44 |
+
link = 'Check Out Our Github Repo! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
|
45 |
+
st.markdown(link, unsafe_allow_html=True)
|
46 |
+
|
47 |
+
# Load the model and stop the app if it fails
|
48 |
+
model = load_keras_model()
|
49 |
+
if model is None:
|
50 |
+
st.warning("Model could not be loaded. The application cannot proceed.")
|
51 |
+
st.stop()
|
52 |
+
|
53 |
+
# --- Image Selection Section ---
|
54 |
+
st.subheader("Upload a Dental Panoramic X-ray Image or Select an Example")
|
55 |
+
image_file = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
56 |
+
|
57 |
+
st.write("---")
|
58 |
+
st.write("Or choose an example:")
|
59 |
+
examples = ["107.png", "108.png", "109.png"]
|
60 |
+
col1, col2, col3 = st.columns(3)
|
61 |
+
|
62 |
+
# Display example images and buttons to use them
|
63 |
+
with col1:
|
64 |
+
st.image(examples[0], caption='Example 1', use_column_width=True)
|
65 |
+
if st.button('Use Example 1'):
|
66 |
+
image_file = examples[0]
|
67 |
+
|
68 |
+
with col2:
|
69 |
+
st.image(examples[1], caption='Example 2', use_column_width=True)
|
70 |
+
if st.button('Use Example 2'):
|
71 |
+
image_file = examples[1]
|
72 |
+
|
73 |
+
with col3:
|
74 |
+
st.image(examples[2], caption='Example 3', use_column_width=True)
|
75 |
+
if st.button('Use Example 3'):
|
76 |
+
image_file = examples[2]
|
77 |
+
|
78 |
+
# --- Processing and Prediction Section ---
|
79 |
+
if image_file is not None:
|
80 |
+
st.write("---")
|
81 |
+
|
82 |
+
# Load and display the selected image
|
83 |
+
original_pil_img = load_image(image_file)
|
84 |
+
st.image(original_pil_img, caption="Original Image", use_column_width=True)
|
85 |
+
|
86 |
+
with st.spinner("Analyzing image and predicting segmentation..."):
|
87 |
+
# Convert PIL image to NumPy array for processing
|
88 |
+
original_np_img = np.array(original_pil_img)
|
89 |
+
|
90 |
+
# 1. Pre-process for the model
|
91 |
+
img_gray = convert_one_channel(original_np_img.copy())
|
92 |
+
img_resized = cv2.resize(img_gray, (512, 512), interpolation=cv2.INTER_LANCZOS4)
|
93 |
+
img_normalized = np.float32(img_resized / 255.0)
|
94 |
+
img_input = np.reshape(img_normalized, (1, 512, 512, 1))
|
95 |
+
|
96 |
+
# 2. Make prediction
|
97 |
+
prediction = model.predict(img_input)
|
98 |
+
|
99 |
+
# 3. Post-process the prediction mask
|
100 |
+
predicted_mask = prediction[0]
|
101 |
+
resized_mask = cv2.resize(predicted_mask, (original_np_img.shape[1], original_np_img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
102 |
+
|
103 |
+
# Binarize the mask using Otsu's thresholding
|
104 |
+
mask_8bit = (resized_mask * 255).astype(np.uint8)
|
105 |
+
_, final_mask = cv2.threshold(mask_8bit, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
106 |
+
|
107 |
+
# Clean up mask with morphological operations
|
108 |
+
kernel = np.ones((5, 5), dtype=np.uint8)
|
109 |
+
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
110 |
+
final_mask = cv2.morphologyEx(final_mask, cv2.MORPH_CLOSE, kernel, iterations=1)
|
111 |
+
|
112 |
+
# Find contours on the final mask
|
113 |
+
contours, _ = cv2.findContours(final_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
114 |
+
|
115 |
+
# Draw contours on a color version of the original image
|
116 |
+
img_for_drawing = convert_rgb(original_np_img.copy())
|
117 |
+
output_image = cv2.drawContours(img_for_drawing, contours, -1, (255, 0, 0), 3) # Draw red contours
|
118 |
+
|
119 |
+
st.subheader("Predicted Segmentation")
|
120 |
+
st.image(output_image, caption="Image with Segmented Teeth", use_column_width=True)
|
121 |
+
|
122 |
+
st.success("Prediction complete!")
|