NER / app.py
Shenuki's picture
Update app.py
ce5002a verified
# app.py
import os
import requests
import wikipedia
import gradio as gr
import torch
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from typing import List
from transformers import (
SeamlessM4TTokenizer,
SeamlessM4TProcessor,
SeamlessM4TForTextToText,
pipeline as hf_pipeline
)
# ── 1) Model setup ────────────────────────────────────────────────────────────
MODEL = "facebook/hf-seamless-m4t-medium"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = SeamlessM4TTokenizer.from_pretrained(MODEL, use_fast=False)
processor = SeamlessM4TProcessor.from_pretrained(MODEL, tokenizer=tokenizer)
m4t_model = SeamlessM4TForTextToText.from_pretrained(MODEL).to(device)
if device == "cuda":
m4t_model = m4t_model.half() # FP16 for faster inference on GPU
m4t_model.eval()
def translate_m4t(text: str, src_iso3: str, tgt_iso3: str, auto_detect=False) -> str:
src = None if auto_detect else src_iso3
inputs = processor(text=text, src_lang=src, return_tensors="pt").to(device)
tokens = m4t_model.generate(**inputs, tgt_lang=tgt_iso3)
return processor.decode(tokens[0].tolist(), skip_special_tokens=True)
def translate_m4t_batch(
texts: List[str], src_iso3: str, tgt_iso3: str, auto_detect=False
) -> List[str]:
src = None if auto_detect else src_iso3
inputs = processor(
text=texts, src_lang=src, return_tensors="pt", padding=True
).to(device)
tokens = m4t_model.generate(
**inputs,
tgt_lang=tgt_iso3,
max_new_tokens=60,
num_beams=1
)
return processor.batch_decode(tokens, skip_special_tokens=True)
# ── 2) NER pipeline (updated for deprecation) ────────────────────────────────
ner = hf_pipeline(
"ner",
model="dslim/bert-base-NER-uncased",
aggregation_strategy="simple"
)
# ── 3) CACHING helpers ──────────────────────────────────────────────────────
@lru_cache(maxsize=256)
def geocode_cache(place: str):
r = requests.get(
"https://nominatim.openstreetmap.org/search",
params={"q": place, "format": "json", "limit": 1},
headers={"User-Agent": "iVoiceContext/1.0"}
).json()
if not r:
return None
return {"lat": float(r[0]["lat"]), "lon": float(r[0]["lon"])}
@lru_cache(maxsize=256)
def fetch_osm_cache(lat: float, lon: float, osm_filter: str, limit: int = 5):
payload = f"""
[out:json][timeout:25];
(
node{osm_filter}(around:1000,{lat},{lon});
way{osm_filter}(around:1000,{lat},{lon});
);
out center {limit};
"""
resp = requests.post(
"https://overpass-api.de/api/interpreter",
data={"data": payload}
)
elems = resp.json().get("elements", [])
return [
{"name": e["tags"]["name"]}
for e in elems
if e.get("tags", {}).get("name")
]
@lru_cache(maxsize=256)
def wiki_summary_cache(name: str) -> str:
try:
return wikipedia.summary(name, sentences=2)
except:
return "No summary available."
# ── 4) Per-entity worker ────────────────────────────────────────────────────
def process_entity(ent) -> dict:
w = ent["word"]
lbl = ent["entity_group"]
if lbl == "LOC":
geo = geocode_cache(w)
if not geo:
return {
"text": w,
"label": lbl,
"type": "location",
"error": "could not geocode"
}
restaurants = fetch_osm_cache(geo["lat"], geo["lon"], '["amenity"="restaurant"]')
attractions = fetch_osm_cache(geo["lat"], geo["lon"], '["tourism"="attraction"]')
return {
"text": w,
"label": lbl,
"type": "location",
"geo": geo,
"restaurants": restaurants,
"attractions": attractions
}
# PERSON / ORG / MISC β†’ Wikipedia
summary = wiki_summary_cache(w)
return {"text": w, "label": lbl, "type": "wiki", "summary": summary}
# ── 5) Main function ────────────────────────────────────────────────────────
def get_context(
text: str,
source_lang: str,
output_lang: str,
auto_detect: bool
):
# a) Ensure English for NER
if auto_detect or source_lang != "eng":
en = translate_m4t(text, source_lang, "eng", auto_detect=auto_detect)
else:
en = text
# b) Run NER + dedupe
ner_out = ner(en)
seen = set()
unique_ents = []
for ent in ner_out:
w = ent["word"]
if w in seen:
continue
seen.add(w)
unique_ents.append(ent)
# c) Parallel I/O
entities = []
with ThreadPoolExecutor(max_workers=8) as exe:
futures = [exe.submit(process_entity, ent) for ent in unique_ents]
for fut in futures:
entities.append(fut.result())
# d) Batch-translate non-English fields
if output_lang != "eng":
to_translate = []
translations_info = []
for i, e in enumerate(entities):
if e["type"] == "wiki":
translations_info.append(("summary", i))
to_translate.append(e["summary"])
elif e["type"] == "location":
for j, r in enumerate(e["restaurants"]):
translations_info.append(("restaurant", i, j))
to_translate.append(r["name"])
for j, a in enumerate(e["attractions"]):
translations_info.append(("attraction", i, j))
to_translate.append(a["name"])
translated = translate_m4t_batch(to_translate, "eng", output_lang)
for txt, info in zip(translated, translations_info):
kind = info[0]
if kind == "summary":
_, ei = info
entities[ei]["summary"] = txt
elif kind == "restaurant":
_, ei, ri = info
entities[ei]["restaurants"][ri]["name"] = txt
elif kind == "attraction":
_, ei, ai = info
entities[ei]["attractions"][ai]["name"] = txt
return {"entities": entities}
# ── 6) Gradio interface ─────────────────────────────────────────────────────
iface = gr.Interface(
fn=get_context,
inputs=[
gr.Textbox(lines=3, placeholder="Enter text…"),
gr.Textbox(label="Source Language (ISO 639-3)"),
gr.Textbox(label="Target Language (ISO 639-3)"),
gr.Checkbox(label="Auto-detect source language")
],
outputs="json",
title="iVoice Context-Aware",
description="Returns only the detected entities and their related info."
).queue() # ← removed unsupported kwargs
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
share=True
)