File size: 15,493 Bytes
69dc62d 7c8dfad 2ba944a 69dc62d 6322440 69dc62d 435348f 69dc62d 2ba944a 69dc62d 435348f 2ba944a 69dc62d 2ba944a 69dc62d 2ba944a 69dc62d 2ba944a 69dc62d 2ba944a 435348f 69dc62d 6322440 69dc62d 2ba944a 435348f 69dc62d 2ba944a 69dc62d 435348f 69dc62d 435348f 69dc62d 2ba944a 69dc62d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import gradio as gr
import pandas as pd
import json
import os
from constants import LEADERBOARD_CSS, EXPLANATION, EXPLANATION_EDACC, EXPLANATION_AFRI
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone
from huggingface_hub import HfApi, upload_file
LAST_UPDATED = "Nov 22th 2024"
column_names = {
"model": "Model",
"Average WER ⬇️": "Average WER ⬇️",
"Average Female WER ⬇️": "Average Female WER ⬇️",
"Average Male WER ⬇️": "Average Male WER ⬇️",
"RTFx": "RTFx ⬆️️",
"Bulgarian_female": "Bulgarian female",
"Bulgarian_male": "Bulgarian male",
"Catalan_female": "Catalan female",
"Chinese_female": "Chinese female",
"Chinese_male": "Chinese male",
"Eastern_European_male": "Eastern European male",
"European_male": "European male",
"French_female": "French female",
"Ghanain_English_female": "Ghanain English female",
"Indian_English_female": "Indian English female",
"Indian_English_male": "Indian English male",
"Indonesian_female": "Indonesian female",
"Irish_English_female": "Irish English female",
"Irish_English_male": "Irish English male",
"Israeli_male": "Israeli male",
"Italian_female": "Italian female",
"Jamaican_English_female": "Jamaican English female",
"Jamaican_English_male": "Jamaican English male",
"Kenyan_English_female": "Kenyan English female",
"Kenyan_English_male": "Kenyan English male",
"Latin_American_female": "Latin American female",
"Latin_American_male": "Latin American male",
"Lithuanian_male": "Lithuanian male",
"Mainstream_US_English_female": "Mainstream US English female",
"Mainstream_US_English_male": "Mainstream US English male",
"Nigerian_English_female": "Nigerian English female",
"Nigerian_English_male": "Nigerian English male",
"Romanian_female": "Romanian female",
"Scottish_English_male": "Scottish English male",
"Southern_British_English_male": "Southern British English male",
"Spanish_female": "Spanish female",
"Spanish_male": "Spanish male",
"Vietnamese_female": "Vietnamese female",
"Vietnamese_male": "Vietnamese male",
"agatu_test": "Agatu",
"angas_test": "Angas",
"bajju_test": "Bajju",
"bini_test": "Bini",
"brass_test": "Brass",
"delta_test": "Delta",
"eggon_test": "Eggon",
"ekene_test": "Ekene",
"ekpeye_test": "Ekpeye",
"gbagyi_test": "Gbagyi",
"igarra_test": "Igarra",
"ijaw-nembe_test": "Ijaw-Nembe",
"ikulu_test": "Ikulu",
"jaba_test": "Jaba",
"jukun_test": "Jukun",
"khana_test": "Khana",
"mada_test": "Mada",
"mwaghavul_test": "Mwaghavul",
"ukwuani_test": "Ukwuani",
"yoruba-hausa_test": "Yoruba-Hausa",
}
african_cols = ["Ghanain English female", "Kenyan English female", "Kenyan English male", "Nigerian English female", "Nigerian English male"]
north_american_cols = ["Mainstream US English female", "Mainstream US English male"]
caribbean_cols = ["Jamaican English female", "Jamaican English male"]
latin_american_cols = ["Latin American female", "Latin American male"]
british_cols = ["Irish English female", "Irish English male", "Scottish English male", "Southern British English male"]
european_cols = ["Eastern European male", "European male", "French female", "Italian female", "Spanish female", "Spanish male", "Catalan female", "Bulgarian female", "Bulgarian male", "Lithuanian male", "Romanian female"]
asian_cols = ["Chinese female", "Chinese male", "Indonesian female", "Vietnamese female", "Vietnamese male", "Indian English female", "Indian English male"]
eval_queue_repo_edacc, requested_models, csv_results_edacc, csv_results_afrispeech = load_all_info_from_dataset_hub()
if not csv_results_edacc.exists():
raise Exception(f"CSV file {csv_results_edacc} does not exist locally")
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results_edacc)
afrispeech_df = pd.read_csv(csv_results_afrispeech)
# Formats the columns
def formatter(x):
if type(x) is str:
x = x
else:
x = round(x, 2)
return x
for col in original_df.columns:
if col == "model":
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
original_df[col] = original_df[col].apply(formatter) # For numerical values
for col in afrispeech_df.columns:
if col == "model":
afrispeech_df[col] = afrispeech_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
afrispeech_df[col] = afrispeech_df[col].apply(formatter) # For numerical values
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER ⬇️', inplace=True)
afrispeech_df.rename(columns=column_names, inplace=True)
afrispeech_df.sort_values(by='Average WER ⬇️', inplace=True)
female_cols = [col for col in original_df.columns if 'female' == col.split(' ')[-1]]
male_cols = [col for col in original_df.columns if 'male' == col.split(' ')[-1]]
# Create male DataFrame properly
male_df = original_df[['Model'] + male_cols].copy() # Create explicit copy with model column
male_df.loc[:, 'Average Male WER ⬇️'] = male_df[male_cols].mean(axis=1)
male_df.loc[:, 'Average Male WER ⬇️'] = male_df['Average Male WER ⬇️'].apply(formatter)
male_df = male_df[['Model', 'Average Male WER ⬇️'] + male_cols]
# Create female DataFrame properly
female_df = original_df[['Model'] + female_cols].copy() # Create explicit copy with model column
female_df.loc[:, 'Average Female WER ⬇️'] = female_df[female_cols].mean(axis=1)
female_df.loc[:, 'Average Female WER ⬇️'] = female_df['Average Female WER ⬇️'].apply(formatter)
female_df = female_df[['Model', 'Average Female WER ⬇️'] + female_cols]
african_df = original_df[['Model'] + african_cols].copy()
african_df.loc[:, 'Average African WER ⬇️'] = african_df[african_cols].mean(axis=1)
african_df.loc[:, 'Average African WER ⬇️'] = african_df['Average African WER ⬇️'].apply(formatter)
african_df = african_df[['Model', 'Average African WER ⬇️'] + african_cols]
north_american_df = original_df[['Model'] + north_american_cols].copy()
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df[north_american_cols].mean(axis=1)
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df['Average North American WER ⬇️'].apply(formatter)
north_american_df = north_american_df[['Model', 'Average North American WER ⬇️'] + north_american_cols]
caribbean_df = original_df[['Model'] + caribbean_cols].copy()
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df[caribbean_cols].mean(axis=1)
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df['Average Caribbean WER ⬇️'].apply(formatter)
caribbean_df = caribbean_df[['Model', 'Average Caribbean WER ⬇️'] + caribbean_cols]
latin_american_df = original_df[['Model'] + latin_american_cols].copy()
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df[latin_american_cols].mean(axis=1)
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df['Average Latin American WER ⬇️'].apply(formatter)
latin_american_df = latin_american_df[['Model', 'Average Latin American WER ⬇️'] + latin_american_cols]
british_df = original_df[['Model'] + british_cols].copy()
british_df.loc[:, 'Average British WER ⬇️'] = british_df[british_cols].mean(axis=1)
british_df.loc[:, 'Average British WER ⬇️'] = british_df['Average British WER ⬇️'].apply(formatter)
british_df = british_df[['Model', 'Average British WER ⬇️'] + british_cols]
european_df = original_df[['Model'] + european_cols].copy()
european_df.loc[:, 'Average European WER ⬇️'] = european_df[european_cols].mean(axis=1)
european_df.loc[:, 'Average European WER ⬇️'] = european_df['Average European WER ⬇️'].apply(formatter)
european_df = european_df[['Model', 'Average European WER ⬇️'] + european_cols]
asian_df = original_df[['Model'] + asian_cols].copy()
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df[asian_cols].mean(axis=1)
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df['Average Asian WER ⬇️'].apply(formatter)
asian_df = asian_df[['Model', 'Average Asian WER ⬇️'] + asian_cols]
# add average female and mal to original df and place it after average wer
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average African WER ⬇️', african_df['Average African WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average North American WER ⬇️', north_american_df['Average North American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Caribbean WER ⬇️', caribbean_df['Average Caribbean WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Latin American WER ⬇️', latin_american_df['Average Latin American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average British WER ⬇️', british_df['Average British WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average European WER ⬇️', european_df['Average European WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Asian WER ⬇️', asian_df['Average Asian WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Female WER ⬇️', female_df['Average Female WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Male WER ⬇️', male_df['Average Male WER ⬇️'])
# Save the updated DataFrame to a temporary CSV file
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S") # Generate a timestamp
temp_csv_filename = f"updated_leaderboard_{timestamp}.csv" # Create a unique filename
original_df.to_csv(temp_csv_filename, index=False) # Save the DataFrame to a temporary CSV file
# Upload the CSV file to Hugging Face
hf_api = HfApi()
repo_id = "Steveeeeeeen/whisper-leaderboard-evals" # Replace with your Hugging Face repo ID
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
upload_file(
path_or_fileobj=temp_csv_filename,
path_in_repo=f"data/{temp_csv_filename}", # Path in the Hugging Face repo
repo_id=repo_id,
token=TOKEN_HUB,
repo_type="dataset"
)
print(f"Updated leaderboard uploaded to Hugging Face: {repo_id}/data/{temp_csv_filename}")
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
# gr.HTML(BANNER, elem_id="banner")
# Write a header with the title
gr.Markdown("<h1>🤫 How Biased is Whisper?</h1>", elem_classes="markdown-text")
gr.Markdown(EXPLANATION, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Edacc Results", elem_id="od-benchmark-tab-table", id=0):
gr.Markdown(EXPLANATION_EDACC, elem_classes="markdown-text")
# Add column filter dropdown
column_filter = gr.Dropdown(
choices=["All", "Female", "Male", "African", "North American", "Caribbean", "Latin American", "British", "European", "Asian"] + [v for k,v in column_names.items() if k != "model"],
label="Filter by column",
multiselect=True,
value=["All"],
elem_id="column-filter"
)
leaderboard_table = gr.components.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Update table columns when filter changes
def update_table(cols):
# Dictionary mapping view names to their corresponding dataframes
view_mapping = {
"All": original_df,
"Female": female_df,
"Male": male_df,
"African": african_df,
"North American": north_american_df,
"Caribbean": caribbean_df,
"Latin American": latin_american_df,
"British": british_df,
"European": european_df,
"Asian": asian_df
}
# Handle special views
selected_special_views = [view for view in view_mapping.keys() if view in cols]
if selected_special_views:
# Start with the first selected view's columns
result_cols = set(view_mapping[selected_special_views[0]].columns)
# Take union of columns from all selected views
for view in selected_special_views[1:]:
result_cols.update(view_mapping[view].columns)
# Convert to list and ensure "Model" is first
result_cols = ["Model"] + sorted(list(result_cols - {"Model"}))
# Merge all relevant columns from original_df
return gr.Dataframe(value=original_df[result_cols])
# If no special view is selected, return filtered columns from original df
selected_cols = ["Model"] + cols # Always include the Model column
return gr.Dataframe(value=original_df[selected_cols])
column_filter.change(
fn=update_table,
inputs=[column_filter],
outputs=[leaderboard_table]
)
with gr.TabItem("🏅 Afrispeech Results", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(EXPLANATION_AFRI, elem_classes="markdown-text")
# Add column filter dropdown
afrispeech_column_filter = gr.Dropdown(
choices=["All"] + [v for k,v in column_names.items() if k != "model" and v in afrispeech_df.columns],
label="Filter by column",
multiselect=True,
value=["All"],
elem_id="afrispeech-column-filter"
)
leaderboard_table = gr.components.Dataframe(
value=afrispeech_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Update table columns when filter changes
def update_afrispeech_table(cols):
if "All" in cols:
return gr.Dataframe(value=afrispeech_df)
selected_cols = ["Model"] + cols # Always include the Model column
return gr.Dataframe(value=afrispeech_df[selected_cols])
afrispeech_column_filter.change(
fn=update_afrispeech_table,
inputs=[afrispeech_column_filter],
outputs=[leaderboard_table]
)
demo.launch(ssr_mode=False)
|