File size: 15,493 Bytes
69dc62d
 
 
7c8dfad
2ba944a
69dc62d
 
 
6322440
69dc62d
 
 
 
 
 
435348f
 
69dc62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba944a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dc62d
 
435348f
 
 
 
 
 
 
2ba944a
69dc62d
2ba944a
 
69dc62d
 
2ba944a
 
 
69dc62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba944a
 
 
 
 
 
69dc62d
 
2ba944a
 
 
435348f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dc62d
6322440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dc62d
 
 
 
 
 
2ba944a
435348f
 
 
69dc62d
 
2ba944a
 
69dc62d
 
435348f
69dc62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435348f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dc62d
 
 
 
 
 
 
 
 
2ba944a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dc62d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import gradio as gr
import pandas as pd
import json
import os
from constants import LEADERBOARD_CSS, EXPLANATION, EXPLANATION_EDACC, EXPLANATION_AFRI
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone
from huggingface_hub import HfApi, upload_file

LAST_UPDATED = "Nov 22th 2024"

column_names = {
    "model": "Model",
    "Average WER ⬇️": "Average WER ⬇️",    
    "Average Female WER ⬇️": "Average Female WER ⬇️",
    "Average Male WER ⬇️": "Average Male WER ⬇️",
    "RTFx": "RTFx ⬆️️",
    "Bulgarian_female": "Bulgarian female",
    "Bulgarian_male": "Bulgarian male",
    "Catalan_female": "Catalan female",
    "Chinese_female": "Chinese female",
    "Chinese_male": "Chinese male",
    "Eastern_European_male": "Eastern European male",
    "European_male": "European male",
    "French_female": "French female",
    "Ghanain_English_female": "Ghanain English female",
    "Indian_English_female": "Indian English female",
    "Indian_English_male": "Indian English male",
    "Indonesian_female": "Indonesian female",
    "Irish_English_female": "Irish English female",
    "Irish_English_male": "Irish English male",
    "Israeli_male": "Israeli male",
    "Italian_female": "Italian female",
    "Jamaican_English_female": "Jamaican English female",
    "Jamaican_English_male": "Jamaican English male",
    "Kenyan_English_female": "Kenyan English female",
    "Kenyan_English_male": "Kenyan English male",
    "Latin_American_female": "Latin American female",
    "Latin_American_male": "Latin American male",
    "Lithuanian_male": "Lithuanian male",
    "Mainstream_US_English_female": "Mainstream US English female",
    "Mainstream_US_English_male": "Mainstream US English male",
    "Nigerian_English_female": "Nigerian English female",
    "Nigerian_English_male": "Nigerian English male",
    "Romanian_female": "Romanian female",
    "Scottish_English_male": "Scottish English male",
    "Southern_British_English_male": "Southern British English male",
    "Spanish_female": "Spanish female",
    "Spanish_male": "Spanish male",
    "Vietnamese_female": "Vietnamese female",
    "Vietnamese_male": "Vietnamese male",
    "agatu_test": "Agatu",
    "angas_test": "Angas",
    "bajju_test": "Bajju",
    "bini_test": "Bini",
    "brass_test": "Brass",
    "delta_test": "Delta",
    "eggon_test": "Eggon",
    "ekene_test": "Ekene",
    "ekpeye_test": "Ekpeye",
    "gbagyi_test": "Gbagyi",
    "igarra_test": "Igarra",
    "ijaw-nembe_test": "Ijaw-Nembe",
    "ikulu_test": "Ikulu",
    "jaba_test": "Jaba",
    "jukun_test": "Jukun",
    "khana_test": "Khana",
    "mada_test": "Mada",
    "mwaghavul_test": "Mwaghavul",
    "ukwuani_test": "Ukwuani",
    "yoruba-hausa_test": "Yoruba-Hausa",
}

african_cols = ["Ghanain English female", "Kenyan English female", "Kenyan English male", "Nigerian English female", "Nigerian English male"]
north_american_cols = ["Mainstream US English female", "Mainstream US English male"]
caribbean_cols = ["Jamaican English female", "Jamaican English male"]
latin_american_cols = ["Latin American female", "Latin American male"]
british_cols = ["Irish English female", "Irish English male", "Scottish English male", "Southern British English male"]
european_cols = ["Eastern European male", "European male", "French female", "Italian female", "Spanish female", "Spanish male", "Catalan female", "Bulgarian female", "Bulgarian male", "Lithuanian male", "Romanian female"]
asian_cols = ["Chinese female", "Chinese male", "Indonesian female", "Vietnamese female", "Vietnamese male", "Indian English female", "Indian English male"]
eval_queue_repo_edacc, requested_models, csv_results_edacc, csv_results_afrispeech = load_all_info_from_dataset_hub()

if not csv_results_edacc.exists():
    raise Exception(f"CSV file {csv_results_edacc} does not exist locally")
    
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results_edacc)

afrispeech_df = pd.read_csv(csv_results_afrispeech)

# Formats the columns
def formatter(x):
    if type(x) is str:
        x = x
    else: 
        x = round(x, 2)
    return x

for col in original_df.columns:
    if col == "model":
        original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        original_df[col] = original_df[col].apply(formatter) # For numerical values
 
for col in afrispeech_df.columns:
    if col == "model":
        afrispeech_df[col] = afrispeech_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        afrispeech_df[col] = afrispeech_df[col].apply(formatter) # For numerical values

original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER ⬇️', inplace=True)
afrispeech_df.rename(columns=column_names, inplace=True)
afrispeech_df.sort_values(by='Average WER ⬇️', inplace=True)

female_cols = [col for col in original_df.columns if 'female' == col.split(' ')[-1]]
male_cols = [col for col in original_df.columns if 'male' == col.split(' ')[-1]]

# Create male DataFrame properly
male_df = original_df[['Model'] + male_cols].copy()  # Create explicit copy with model column
male_df.loc[:, 'Average Male WER ⬇️'] = male_df[male_cols].mean(axis=1)
male_df.loc[:, 'Average Male WER ⬇️'] = male_df['Average Male WER ⬇️'].apply(formatter)
male_df = male_df[['Model', 'Average Male WER ⬇️'] + male_cols]

# Create female DataFrame properly
female_df = original_df[['Model'] + female_cols].copy()  # Create explicit copy with model column
female_df.loc[:, 'Average Female WER ⬇️'] = female_df[female_cols].mean(axis=1)
female_df.loc[:, 'Average Female WER ⬇️'] = female_df['Average Female WER ⬇️'].apply(formatter)
female_df = female_df[['Model', 'Average Female WER ⬇️'] + female_cols]

african_df = original_df[['Model'] + african_cols].copy()
african_df.loc[:, 'Average African WER ⬇️'] = african_df[african_cols].mean(axis=1)
african_df.loc[:, 'Average African WER ⬇️'] = african_df['Average African WER ⬇️'].apply(formatter)
african_df = african_df[['Model', 'Average African WER ⬇️'] + african_cols]

north_american_df = original_df[['Model'] + north_american_cols].copy()
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df[north_american_cols].mean(axis=1)
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df['Average North American WER ⬇️'].apply(formatter)
north_american_df = north_american_df[['Model', 'Average North American WER ⬇️'] + north_american_cols]

caribbean_df = original_df[['Model'] + caribbean_cols].copy()
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df[caribbean_cols].mean(axis=1)
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df['Average Caribbean WER ⬇️'].apply(formatter)
caribbean_df = caribbean_df[['Model', 'Average Caribbean WER ⬇️'] + caribbean_cols]

latin_american_df = original_df[['Model'] + latin_american_cols].copy()
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df[latin_american_cols].mean(axis=1)
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df['Average Latin American WER ⬇️'].apply(formatter)
latin_american_df = latin_american_df[['Model', 'Average Latin American WER ⬇️'] + latin_american_cols]

british_df = original_df[['Model'] + british_cols].copy()
british_df.loc[:, 'Average British WER ⬇️'] = british_df[british_cols].mean(axis=1)
british_df.loc[:, 'Average British WER ⬇️'] = british_df['Average British WER ⬇️'].apply(formatter)
british_df = british_df[['Model', 'Average British WER ⬇️'] + british_cols]

european_df = original_df[['Model'] + european_cols].copy()
european_df.loc[:, 'Average European WER ⬇️'] = european_df[european_cols].mean(axis=1)
european_df.loc[:, 'Average European WER ⬇️'] = european_df['Average European WER ⬇️'].apply(formatter)
european_df = european_df[['Model', 'Average European WER ⬇️'] + european_cols]

asian_df = original_df[['Model'] + asian_cols].copy()
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df[asian_cols].mean(axis=1)
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df['Average Asian WER ⬇️'].apply(formatter)
asian_df = asian_df[['Model', 'Average Asian WER ⬇️'] + asian_cols]


# add average female and mal to original df and place it after average wer
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average African WER ⬇️', african_df['Average African WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average North American WER ⬇️', north_american_df['Average North American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Caribbean WER ⬇️', caribbean_df['Average Caribbean WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Latin American WER ⬇️', latin_american_df['Average Latin American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average British WER ⬇️', british_df['Average British WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average European WER ⬇️', european_df['Average European WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Asian WER ⬇️', asian_df['Average Asian WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Female WER ⬇️', female_df['Average Female WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Male WER ⬇️', male_df['Average Male WER ⬇️'])

# Save the updated DataFrame to a temporary CSV file
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S")  # Generate a timestamp
temp_csv_filename = f"updated_leaderboard_{timestamp}.csv"  # Create a unique filename
original_df.to_csv(temp_csv_filename, index=False)  # Save the DataFrame to a temporary CSV file

# Upload the CSV file to Hugging Face
hf_api = HfApi()
repo_id = "Steveeeeeeen/whisper-leaderboard-evals"  # Replace with your Hugging Face repo ID
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)

upload_file(
    path_or_fileobj=temp_csv_filename,
    path_in_repo=f"data/{temp_csv_filename}",  # Path in the Hugging Face repo
    repo_id=repo_id,
    token=TOKEN_HUB,
    repo_type="dataset"
)

print(f"Updated leaderboard uploaded to Hugging Face: {repo_id}/data/{temp_csv_filename}")

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]

with gr.Blocks(css=LEADERBOARD_CSS) as demo:
    # gr.HTML(BANNER, elem_id="banner")
    # Write a header with the title
    gr.Markdown("<h1>🤫 How Biased is Whisper?</h1>", elem_classes="markdown-text")

    
    gr.Markdown(EXPLANATION, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Edacc Results", elem_id="od-benchmark-tab-table", id=0):
            gr.Markdown(EXPLANATION_EDACC, elem_classes="markdown-text")
            # Add column filter dropdown
            column_filter = gr.Dropdown(
                choices=["All", "Female", "Male", "African", "North American", "Caribbean", "Latin American", "British", "European", "Asian"] + [v for k,v in column_names.items() if k != "model"],
                label="Filter by column", 
                multiselect=True,
                value=["All"],
                elem_id="column-filter"
            )
            
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )
            
            # Update table columns when filter changes
            def update_table(cols):
                # Dictionary mapping view names to their corresponding dataframes
                view_mapping = {
                    "All": original_df,
                    "Female": female_df,
                    "Male": male_df,
                    "African": african_df,
                    "North American": north_american_df,
                    "Caribbean": caribbean_df,
                    "Latin American": latin_american_df,
                    "British": british_df,
                    "European": european_df,
                    "Asian": asian_df
                }

                # Handle special views
                selected_special_views = [view for view in view_mapping.keys() if view in cols]
                
                if selected_special_views:
                    # Start with the first selected view's columns
                    result_cols = set(view_mapping[selected_special_views[0]].columns)
                    
                    # Take union of columns from all selected views
                    for view in selected_special_views[1:]:
                        result_cols.update(view_mapping[view].columns)
                    
                    # Convert to list and ensure "Model" is first
                    result_cols = ["Model"] + sorted(list(result_cols - {"Model"}))
                    
                    # Merge all relevant columns from original_df
                    return gr.Dataframe(value=original_df[result_cols])
                
                # If no special view is selected, return filtered columns from original df
                selected_cols = ["Model"] + cols  # Always include the Model column
                return gr.Dataframe(value=original_df[selected_cols])
            
            column_filter.change(
                fn=update_table,
                inputs=[column_filter],
                outputs=[leaderboard_table]
            )

        with gr.TabItem("🏅 Afrispeech Results", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(EXPLANATION_AFRI, elem_classes="markdown-text")
            # Add column filter dropdown
            afrispeech_column_filter = gr.Dropdown(
                choices=["All"] + [v for k,v in column_names.items() if k != "model" and v in afrispeech_df.columns],
                label="Filter by column", 
                multiselect=True,
                value=["All"],
                elem_id="afrispeech-column-filter"
            )
            
            leaderboard_table = gr.components.Dataframe(
                value=afrispeech_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Update table columns when filter changes
            def update_afrispeech_table(cols):
                if "All" in cols:
                    return gr.Dataframe(value=afrispeech_df)
                
                selected_cols = ["Model"] + cols  # Always include the Model column
                return gr.Dataframe(value=afrispeech_df[selected_cols])
            
            afrispeech_column_filter.change(
                fn=update_afrispeech_table,
                inputs=[afrispeech_column_filter],
                outputs=[leaderboard_table]
            )

demo.launch(ssr_mode=False)