Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import json | |
import os | |
from constants import LEADERBOARD_CSS, EXPLANATION, EXPLANATION_EDACC, EXPLANATION_AFRI | |
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub | |
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message | |
from datetime import datetime, timezone | |
from huggingface_hub import HfApi, upload_file | |
LAST_UPDATED = "Nov 22th 2024" | |
column_names = { | |
"model": "Model", | |
"Average WER ⬇️": "Average WER ⬇️", | |
"Average Female WER ⬇️": "Average Female WER ⬇️", | |
"Average Male WER ⬇️": "Average Male WER ⬇️", | |
"RTFx": "RTFx ⬆️️", | |
"Bulgarian_female": "Bulgarian female", | |
"Bulgarian_male": "Bulgarian male", | |
"Catalan_female": "Catalan female", | |
"Chinese_female": "Chinese female", | |
"Chinese_male": "Chinese male", | |
"Eastern_European_male": "Eastern European male", | |
"European_male": "European male", | |
"French_female": "French female", | |
"Ghanain_English_female": "Ghanain English female", | |
"Indian_English_female": "Indian English female", | |
"Indian_English_male": "Indian English male", | |
"Indonesian_female": "Indonesian female", | |
"Irish_English_female": "Irish English female", | |
"Irish_English_male": "Irish English male", | |
"Israeli_male": "Israeli male", | |
"Italian_female": "Italian female", | |
"Jamaican_English_female": "Jamaican English female", | |
"Jamaican_English_male": "Jamaican English male", | |
"Kenyan_English_female": "Kenyan English female", | |
"Kenyan_English_male": "Kenyan English male", | |
"Latin_American_female": "Latin American female", | |
"Latin_American_male": "Latin American male", | |
"Lithuanian_male": "Lithuanian male", | |
"Mainstream_US_English_female": "Mainstream US English female", | |
"Mainstream_US_English_male": "Mainstream US English male", | |
"Nigerian_English_female": "Nigerian English female", | |
"Nigerian_English_male": "Nigerian English male", | |
"Romanian_female": "Romanian female", | |
"Scottish_English_male": "Scottish English male", | |
"Southern_British_English_male": "Southern British English male", | |
"Spanish_female": "Spanish female", | |
"Spanish_male": "Spanish male", | |
"Vietnamese_female": "Vietnamese female", | |
"Vietnamese_male": "Vietnamese male", | |
"agatu_test": "Agatu", | |
"angas_test": "Angas", | |
"bajju_test": "Bajju", | |
"bini_test": "Bini", | |
"brass_test": "Brass", | |
"delta_test": "Delta", | |
"eggon_test": "Eggon", | |
"ekene_test": "Ekene", | |
"ekpeye_test": "Ekpeye", | |
"gbagyi_test": "Gbagyi", | |
"igarra_test": "Igarra", | |
"ijaw-nembe_test": "Ijaw-Nembe", | |
"ikulu_test": "Ikulu", | |
"jaba_test": "Jaba", | |
"jukun_test": "Jukun", | |
"khana_test": "Khana", | |
"mada_test": "Mada", | |
"mwaghavul_test": "Mwaghavul", | |
"ukwuani_test": "Ukwuani", | |
"yoruba-hausa_test": "Yoruba-Hausa", | |
} | |
african_cols = ["Ghanain English female", "Kenyan English female", "Kenyan English male", "Nigerian English female", "Nigerian English male"] | |
north_american_cols = ["Mainstream US English female", "Mainstream US English male"] | |
caribbean_cols = ["Jamaican English female", "Jamaican English male"] | |
latin_american_cols = ["Latin American female", "Latin American male"] | |
british_cols = ["Irish English female", "Irish English male", "Scottish English male", "Southern British English male"] | |
european_cols = ["Eastern European male", "European male", "French female", "Italian female", "Spanish female", "Spanish male", "Catalan female", "Bulgarian female", "Bulgarian male", "Lithuanian male", "Romanian female"] | |
asian_cols = ["Chinese female", "Chinese male", "Indonesian female", "Vietnamese female", "Vietnamese male", "Indian English female", "Indian English male"] | |
eval_queue_repo_edacc, requested_models, csv_results_edacc, csv_results_afrispeech = load_all_info_from_dataset_hub() | |
if not csv_results_edacc.exists(): | |
raise Exception(f"CSV file {csv_results_edacc} does not exist locally") | |
# Get csv with data and parse columns | |
original_df = pd.read_csv(csv_results_edacc) | |
afrispeech_df = pd.read_csv(csv_results_afrispeech) | |
# Formats the columns | |
def formatter(x): | |
if type(x) is str: | |
x = x | |
else: | |
x = round(x, 2) | |
return x | |
for col in original_df.columns: | |
if col == "model": | |
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
else: | |
original_df[col] = original_df[col].apply(formatter) # For numerical values | |
for col in afrispeech_df.columns: | |
if col == "model": | |
afrispeech_df[col] = afrispeech_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
else: | |
afrispeech_df[col] = afrispeech_df[col].apply(formatter) # For numerical values | |
original_df.rename(columns=column_names, inplace=True) | |
original_df.sort_values(by='Average WER ⬇️', inplace=True) | |
afrispeech_df.rename(columns=column_names, inplace=True) | |
afrispeech_df.sort_values(by='Average WER ⬇️', inplace=True) | |
female_cols = [col for col in original_df.columns if 'female' == col.split(' ')[-1]] | |
male_cols = [col for col in original_df.columns if 'male' == col.split(' ')[-1]] | |
# Create male DataFrame properly | |
male_df = original_df[['Model'] + male_cols].copy() # Create explicit copy with model column | |
male_df.loc[:, 'Average Male WER ⬇️'] = male_df[male_cols].mean(axis=1) | |
male_df.loc[:, 'Average Male WER ⬇️'] = male_df['Average Male WER ⬇️'].apply(formatter) | |
male_df = male_df[['Model', 'Average Male WER ⬇️'] + male_cols] | |
# Create female DataFrame properly | |
female_df = original_df[['Model'] + female_cols].copy() # Create explicit copy with model column | |
female_df.loc[:, 'Average Female WER ⬇️'] = female_df[female_cols].mean(axis=1) | |
female_df.loc[:, 'Average Female WER ⬇️'] = female_df['Average Female WER ⬇️'].apply(formatter) | |
female_df = female_df[['Model', 'Average Female WER ⬇️'] + female_cols] | |
african_df = original_df[['Model'] + african_cols].copy() | |
african_df.loc[:, 'Average African WER ⬇️'] = african_df[african_cols].mean(axis=1) | |
african_df.loc[:, 'Average African WER ⬇️'] = african_df['Average African WER ⬇️'].apply(formatter) | |
african_df = african_df[['Model', 'Average African WER ⬇️'] + african_cols] | |
north_american_df = original_df[['Model'] + north_american_cols].copy() | |
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df[north_american_cols].mean(axis=1) | |
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df['Average North American WER ⬇️'].apply(formatter) | |
north_american_df = north_american_df[['Model', 'Average North American WER ⬇️'] + north_american_cols] | |
caribbean_df = original_df[['Model'] + caribbean_cols].copy() | |
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df[caribbean_cols].mean(axis=1) | |
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df['Average Caribbean WER ⬇️'].apply(formatter) | |
caribbean_df = caribbean_df[['Model', 'Average Caribbean WER ⬇️'] + caribbean_cols] | |
latin_american_df = original_df[['Model'] + latin_american_cols].copy() | |
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df[latin_american_cols].mean(axis=1) | |
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df['Average Latin American WER ⬇️'].apply(formatter) | |
latin_american_df = latin_american_df[['Model', 'Average Latin American WER ⬇️'] + latin_american_cols] | |
british_df = original_df[['Model'] + british_cols].copy() | |
british_df.loc[:, 'Average British WER ⬇️'] = british_df[british_cols].mean(axis=1) | |
british_df.loc[:, 'Average British WER ⬇️'] = british_df['Average British WER ⬇️'].apply(formatter) | |
british_df = british_df[['Model', 'Average British WER ⬇️'] + british_cols] | |
european_df = original_df[['Model'] + european_cols].copy() | |
european_df.loc[:, 'Average European WER ⬇️'] = european_df[european_cols].mean(axis=1) | |
european_df.loc[:, 'Average European WER ⬇️'] = european_df['Average European WER ⬇️'].apply(formatter) | |
european_df = european_df[['Model', 'Average European WER ⬇️'] + european_cols] | |
asian_df = original_df[['Model'] + asian_cols].copy() | |
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df[asian_cols].mean(axis=1) | |
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df['Average Asian WER ⬇️'].apply(formatter) | |
asian_df = asian_df[['Model', 'Average Asian WER ⬇️'] + asian_cols] | |
# add average female and mal to original df and place it after average wer | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average African WER ⬇️', african_df['Average African WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average North American WER ⬇️', north_american_df['Average North American WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Caribbean WER ⬇️', caribbean_df['Average Caribbean WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Latin American WER ⬇️', latin_american_df['Average Latin American WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average British WER ⬇️', british_df['Average British WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average European WER ⬇️', european_df['Average European WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Asian WER ⬇️', asian_df['Average Asian WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Female WER ⬇️', female_df['Average Female WER ⬇️']) | |
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Male WER ⬇️', male_df['Average Male WER ⬇️']) | |
# Save the updated DataFrame to a temporary CSV file | |
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S") # Generate a timestamp | |
temp_csv_filename = f"updated_leaderboard_{timestamp}.csv" # Create a unique filename | |
original_df.to_csv(temp_csv_filename, index=False) # Save the DataFrame to a temporary CSV file | |
# Upload the CSV file to Hugging Face | |
hf_api = HfApi() | |
repo_id = "Steveeeeeeen/whisper-leaderboard-evals" # Replace with your Hugging Face repo ID | |
TOKEN_HUB = os.environ.get("TOKEN_HUB", None) | |
upload_file( | |
path_or_fileobj=temp_csv_filename, | |
path_in_repo=f"data/{temp_csv_filename}", # Path in the Hugging Face repo | |
repo_id=repo_id, | |
token=TOKEN_HUB, | |
repo_type="dataset" | |
) | |
print(f"Updated leaderboard uploaded to Hugging Face: {repo_id}/data/{temp_csv_filename}") | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
with gr.Blocks(css=LEADERBOARD_CSS) as demo: | |
# gr.HTML(BANNER, elem_id="banner") | |
# Write a header with the title | |
gr.Markdown("<h1>🤫 How Biased is Whisper?</h1>", elem_classes="markdown-text") | |
gr.Markdown(EXPLANATION, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 Edacc Results", elem_id="od-benchmark-tab-table", id=0): | |
gr.Markdown(EXPLANATION_EDACC, elem_classes="markdown-text") | |
# Add column filter dropdown | |
column_filter = gr.Dropdown( | |
choices=["All", "Female", "Male", "African", "North American", "Caribbean", "Latin American", "British", "European", "Asian"] + [v for k,v in column_names.items() if k != "model"], | |
label="Filter by column", | |
multiselect=True, | |
value=["All"], | |
elem_id="column-filter" | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=original_df, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Update table columns when filter changes | |
def update_table(cols): | |
# Dictionary mapping view names to their corresponding dataframes | |
view_mapping = { | |
"All": original_df, | |
"Female": female_df, | |
"Male": male_df, | |
"African": african_df, | |
"North American": north_american_df, | |
"Caribbean": caribbean_df, | |
"Latin American": latin_american_df, | |
"British": british_df, | |
"European": european_df, | |
"Asian": asian_df | |
} | |
# Handle special views | |
selected_special_views = [view for view in view_mapping.keys() if view in cols] | |
if selected_special_views: | |
# Start with the first selected view's columns | |
result_cols = set(view_mapping[selected_special_views[0]].columns) | |
# Take union of columns from all selected views | |
for view in selected_special_views[1:]: | |
result_cols.update(view_mapping[view].columns) | |
# Convert to list and ensure "Model" is first | |
result_cols = ["Model"] + sorted(list(result_cols - {"Model"})) | |
# Merge all relevant columns from original_df | |
return gr.Dataframe(value=original_df[result_cols]) | |
# If no special view is selected, return filtered columns from original df | |
selected_cols = ["Model"] + cols # Always include the Model column | |
return gr.Dataframe(value=original_df[selected_cols]) | |
column_filter.change( | |
fn=update_table, | |
inputs=[column_filter], | |
outputs=[leaderboard_table] | |
) | |
with gr.TabItem("🏅 Afrispeech Results", elem_id="od-benchmark-tab-table", id=1): | |
gr.Markdown(EXPLANATION_AFRI, elem_classes="markdown-text") | |
# Add column filter dropdown | |
afrispeech_column_filter = gr.Dropdown( | |
choices=["All"] + [v for k,v in column_names.items() if k != "model" and v in afrispeech_df.columns], | |
label="Filter by column", | |
multiselect=True, | |
value=["All"], | |
elem_id="afrispeech-column-filter" | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=afrispeech_df, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Update table columns when filter changes | |
def update_afrispeech_table(cols): | |
if "All" in cols: | |
return gr.Dataframe(value=afrispeech_df) | |
selected_cols = ["Model"] + cols # Always include the Model column | |
return gr.Dataframe(value=afrispeech_df[selected_cols]) | |
afrispeech_column_filter.change( | |
fn=update_afrispeech_table, | |
inputs=[afrispeech_column_filter], | |
outputs=[leaderboard_table] | |
) | |
demo.launch(ssr_mode=False) | |