Update app.py
Browse files
app.py
CHANGED
@@ -75,14 +75,13 @@ def check_system_resources(model_name):
|
|
75 |
else:
|
76 |
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
77 |
|
78 |
-
def setup_environment(
|
79 |
-
|
80 |
# # 检查系统资源并决定使用什么设备
|
81 |
# device, available_memory = check_system_resources(model_name)
|
82 |
device = "cpu"
|
83 |
return device
|
84 |
|
85 |
-
def create_hf_repo(repo_name,
|
86 |
"""创建HuggingFace仓库"""
|
87 |
try:
|
88 |
# check if repo already exists
|
@@ -90,7 +89,7 @@ def create_hf_repo(repo_name, hf_token, private=True):
|
|
90 |
if api.repo_exists(repo_name):
|
91 |
log(f"仓库已存在: {repo_name}")
|
92 |
return ValueError(f"仓库已存在: {repo_name}, 请使用其他名称或删除已存在的仓库")
|
93 |
-
repo_url = create_repo(repo_name, private=private
|
94 |
log(f"创建仓库成功: {repo_url}")
|
95 |
return repo_url
|
96 |
except Exception as e:
|
@@ -197,15 +196,18 @@ def quantize_and_push_model(model_path, repo_id, bits=8):
|
|
197 |
def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progress()):
|
198 |
"""处理模型的主函数,用于Gradio界面"""
|
199 |
try:
|
|
|
|
|
200 |
api = HfApi(token=hf_token)
|
|
|
201 |
# 清空之前的日志
|
202 |
current_logs.clear()
|
203 |
|
204 |
# 设置环境和检查资源
|
205 |
-
device = setup_environment(
|
206 |
|
207 |
# 创建HuggingFace仓库
|
208 |
-
repo_url = create_hf_repo(
|
209 |
|
210 |
# 设置输出目录
|
211 |
output_dir = os.path.join(".", "output", repo_name)
|
@@ -216,23 +218,31 @@ def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progr
|
|
216 |
|
217 |
# 推送到HuggingFace
|
218 |
log(f"正在将模型推送到HuggingFace...")
|
219 |
-
|
220 |
api.upload_folder(
|
221 |
folder_path=model_path,
|
222 |
repo_id=repo_name,
|
223 |
repo_type="model"
|
224 |
)
|
225 |
|
226 |
-
|
227 |
-
#
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
#
|
231 |
-
|
|
|
232 |
|
233 |
-
#
|
234 |
-
|
235 |
-
|
236 |
|
237 |
return "\n".join(current_logs)
|
238 |
except Exception as e:
|
|
|
75 |
else:
|
76 |
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
77 |
|
78 |
+
def setup_environment(model_name):
|
|
|
79 |
# # 检查系统资源并决定使用什么设备
|
80 |
# device, available_memory = check_system_resources(model_name)
|
81 |
device = "cpu"
|
82 |
return device
|
83 |
|
84 |
+
def create_hf_repo(repo_name, private=True):
|
85 |
"""创建HuggingFace仓库"""
|
86 |
try:
|
87 |
# check if repo already exists
|
|
|
89 |
if api.repo_exists(repo_name):
|
90 |
log(f"仓库已存在: {repo_name}")
|
91 |
return ValueError(f"仓库已存在: {repo_name}, 请使用其他名称或删除已存在的仓库")
|
92 |
+
repo_url = create_repo(repo_name, private=private)
|
93 |
log(f"创建仓库成功: {repo_url}")
|
94 |
return repo_url
|
95 |
except Exception as e:
|
|
|
196 |
def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progress()):
|
197 |
"""处理模型的主函数,用于Gradio界面"""
|
198 |
try:
|
199 |
+
login(hf_token)
|
200 |
+
os.environ["HF_TOKEN"] = hf_token
|
201 |
api = HfApi(token=hf_token)
|
202 |
+
|
203 |
# 清空之前的日志
|
204 |
current_logs.clear()
|
205 |
|
206 |
# 设置环境和检查资源
|
207 |
+
device = setup_environment(base_model)
|
208 |
|
209 |
# 创建HuggingFace仓库
|
210 |
+
repo_url = create_hf_repo(repo_name)
|
211 |
|
212 |
# 设置输出目录
|
213 |
output_dir = os.path.join(".", "output", repo_name)
|
|
|
218 |
|
219 |
# 推送到HuggingFace
|
220 |
log(f"正在将模型推送到HuggingFace...")
|
221 |
+
|
222 |
api.upload_folder(
|
223 |
folder_path=model_path,
|
224 |
repo_id=repo_name,
|
225 |
repo_type="model"
|
226 |
)
|
227 |
|
228 |
+
progress(0.4, desc="开始8位量化...")
|
229 |
+
# 量化并上传模型
|
230 |
+
quantize_and_push_model(model_path, repo_name, bits=8)
|
231 |
+
|
232 |
+
progress(0.7, desc="开始4位量化...")
|
233 |
+
quantize_and_push_model(model_path, repo_name, bits=4)
|
234 |
+
|
235 |
+
final_message = f"全部完成!模型已上传至: https://huggingface.co/{repo_name}"
|
236 |
+
log(final_message)
|
237 |
+
progress(1.0, desc="处理完成")
|
238 |
|
239 |
+
# remove hf_token from env
|
240 |
+
os.environ.pop("HF_TOKEN")
|
241 |
+
log("HF_TOKEN已从环境变量中删除")
|
242 |
|
243 |
+
# remove model_path
|
244 |
+
os.remove(model_path)
|
245 |
+
log(f"模型路径已删除: {model_path}")
|
246 |
|
247 |
return "\n".join(current_logs)
|
248 |
except Exception as e:
|