Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai # type: ignore
|
2 |
+
from openai import OpenAI
|
3 |
+
from dotenv import load_dotenv, find_dotenv # type: ignore
|
4 |
+
from huggingface_hub import InferenceClient # type: ignore
|
5 |
+
import pandas as pd # type: ignore
|
6 |
+
import os, time
|
7 |
+
|
8 |
+
load_dotenv(find_dotenv())
|
9 |
+
# Setup API keys
|
10 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
11 |
+
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
12 |
+
|
13 |
+
client = OpenAI()
|
14 |
+
|
15 |
+
# Define a few-shot prompt for personality prediction
|
16 |
+
few_shot_prompt = """
|
17 |
+
You are an expert in personality psychology. Based on the text provided, predict the personality scores for the Big Five personality traits: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Each score should be a floating-point number between 0 and 1.
|
18 |
+
|
19 |
+
Example 1:
|
20 |
+
Text: "I love exploring new ideas and trying new things."
|
21 |
+
Scores: Openness: 0.9, Conscientiousness: 0.4, Extraversion: 0.7, Agreeableness: 0.5, Neuroticism: 0.3
|
22 |
+
|
23 |
+
Example 2:
|
24 |
+
Text: "I prefer to plan everything in advance and stick to the plan."
|
25 |
+
Scores: Openness: 0.3, Conscientiousness: 0.8, Extraversion: 0.4, Agreeableness: 0.6, Neuroticism: 0.4
|
26 |
+
|
27 |
+
Now, predict the scores for the following text:
|
28 |
+
"""
|
29 |
+
|
30 |
+
def predict_personality(text):
|
31 |
+
# Prepare the prompt with the user's text
|
32 |
+
prompt = few_shot_prompt + f"Text: \"{text}\"\nScores:"
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
36 |
+
{"role": "user", "content": prompt}
|
37 |
+
]
|
38 |
+
|
39 |
+
# Call the OpenAI API to get the prediction
|
40 |
+
response = openai.chat.completions.create(
|
41 |
+
model="gpt-4",
|
42 |
+
messages=messages,
|
43 |
+
max_tokens=50,
|
44 |
+
temperature=0.5
|
45 |
+
)
|
46 |
+
|
47 |
+
# Extract the predicted scores from the response
|
48 |
+
scores_text = response.choices[0].message.content.strip()
|
49 |
+
scores = [float(score.split(":")[1].strip()) for score in scores_text.split(",")]
|
50 |
+
return scores
|
51 |
+
|
52 |
+
def create_line_plot(scores):
|
53 |
+
labels = ['Openness', 'Conscientiousness', 'Extraversion', 'Agreeableness', 'Neuroticism']
|
54 |
+
data = {'Personality': labels, 'Score': scores}
|
55 |
+
return pd.DataFrame(data)
|
56 |
+
|
57 |
+
# Gradio interface
|
58 |
+
def personality_app(text):
|
59 |
+
scores = predict_personality(text)
|
60 |
+
df = create_line_plot(scores)
|
61 |
+
return df
|
62 |
+
|
63 |
+
|
64 |
+
def transcribe_audio(audio_path):
|
65 |
+
with open(audio_path, "rb") as audio_file:
|
66 |
+
transcript = client.audio.transcriptions.create(model="whisper-1", file=audio_file)
|
67 |
+
return transcript.text
|
68 |
+
|
69 |
+
def openai_chat_completion(messages: list, selected_model: str) -> list[str]:
|
70 |
+
try:
|
71 |
+
response = openai.chat.completions.create(
|
72 |
+
# model='gpt-3.5-turbo',
|
73 |
+
model=selected_model,
|
74 |
+
messages=messages,
|
75 |
+
# temperature=0.5,
|
76 |
+
)
|
77 |
+
collected_messages = response.choices[0].message.content.strip().split('\n')
|
78 |
+
return collected_messages # return all the collected chunks of messages
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return [str(e)]
|
82 |
+
|
83 |
+
def llama2_chat_completion(messages: list, hf_model_id: str, selected_model: str) -> list[str]:
|
84 |
+
try:
|
85 |
+
hf_token = os.getenv("HF_TOKEN")
|
86 |
+
client = InferenceClient(model=hf_model_id, token=hf_token)
|
87 |
+
# Start the chat completion process with streaming enabled
|
88 |
+
response_stream = client.chat_completion(messages, max_tokens=400, stream=True)
|
89 |
+
|
90 |
+
# Collect the generated message chunks
|
91 |
+
collected_messages = []
|
92 |
+
for completion in response_stream:
|
93 |
+
# Assuming the response structure is similar to OpenAI's
|
94 |
+
delta = completion['choices'][0]['delta']
|
95 |
+
if 'content' in delta.keys():
|
96 |
+
collected_messages.append(delta['content'])
|
97 |
+
# Return the collected messages
|
98 |
+
return collected_messages
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
return [str(e)]
|
102 |
+
|
103 |
+
def generate_messages(messages: list) -> list:
|
104 |
+
formatted_messages = [ # first format of messages for chat completion
|
105 |
+
{
|
106 |
+
'role': 'system',
|
107 |
+
'content': 'You are a helpful assistant.'
|
108 |
+
}
|
109 |
+
|
110 |
+
]
|
111 |
+
for m in messages: # Loop over the existing chat history and create user, assistant responses.
|
112 |
+
formatted_messages.append({
|
113 |
+
'role': 'user',
|
114 |
+
'content': m[0]
|
115 |
+
})
|
116 |
+
if m[1] != None:
|
117 |
+
formatted_messages.append({
|
118 |
+
'role': 'assistant',
|
119 |
+
'content': m[1]
|
120 |
+
})
|
121 |
+
return formatted_messages
|
122 |
+
|
123 |
+
def generate_audio_response(chat_history: list, selected_model: str) -> list: # type: ignore
|
124 |
+
messages = generate_messages(chat_history) # generates messages based on chat history
|
125 |
+
if selected_model == "gpt-4" or "gpt-3.5-turbo":
|
126 |
+
bot_message = openai_chat_completion(messages, selected_model) # Get all the collected chunks of messages for streaming
|
127 |
+
if selected_model == "Llama-3-8B":
|
128 |
+
hf_model_id = "meta-llama/Meta-Llama-3-8B"
|
129 |
+
bot_message = llama2_chat_completion(messages, hf_model_id, selected_model)
|
130 |
+
if selected_model == "Llama-2-7b-chat-Counsel-finetuned":
|
131 |
+
hf_model_id = "TVRRaviteja/Llama-2-7b-chat-Counsel-finetuned"
|
132 |
+
bot_message = llama2_chat_completion(messages, hf_model_id, selected_model)
|
133 |
+
else:
|
134 |
+
selected_model='gpt-3.5-turbo'
|
135 |
+
bot_message = openai_chat_completion(messages, selected_model)
|
136 |
+
|
137 |
+
chat_history[-1][1] = '' # [-1] -> last conversation, [1] -> current carebot message
|
138 |
+
for bm in bot_message: # Loop over the collected messages
|
139 |
+
chat_history[-1][1] += bm
|
140 |
+
time.sleep(0.05)
|
141 |
+
yield chat_history # For streamed carebot responses
|
142 |
+
|
143 |
+
def generate_text_response(chat_history: list, selected_model: str) -> list: # type: ignore
|
144 |
+
messages = generate_messages(chat_history) # generates messages based on chat history
|
145 |
+
if selected_model == "gpt-4" or "gpt-3.5-turbo":
|
146 |
+
bot_message = openai_chat_completion(messages, selected_model) # Get all the collected chunks of messages for streaming
|
147 |
+
if selected_model == "Llama-3-8B":
|
148 |
+
hf_model_id = "meta-llama/Meta-Llama-3-8B"
|
149 |
+
bot_message = llama2_chat_completion(messages, hf_model_id, selected_model)
|
150 |
+
if selected_model == "Llama-2-7b-chat-Counsel-finetuned":
|
151 |
+
hf_model_id = "TVRRaviteja/Llama-2-7b-chat-Counsel-finetuned"
|
152 |
+
bot_message = llama2_chat_completion(messages, hf_model_id, selected_model)
|
153 |
+
else:
|
154 |
+
selected_model='gpt-3.5-turbo'
|
155 |
+
bot_message = openai_chat_completion(messages, selected_model)
|
156 |
+
|
157 |
+
chat_history[-1][1] = '' # [-1] -> last conversation, [1] -> current carebot message
|
158 |
+
for bm in bot_message: # Loop over the collected messages
|
159 |
+
chat_history[-1][1] += bm
|
160 |
+
time.sleep(0.05)
|
161 |
+
yield chat_history # For streamed carebot responses
|
162 |
+
|
163 |
+
def set_user_response(user_message: str, chat_history: list) -> tuple:
|
164 |
+
chat_history += [[user_message, None]] #Append the recent user message into the chat history
|
165 |
+
return '', chat_history
|