Spaces:
Running
Running
import os | |
import json | |
import torch | |
import torchvision.transforms as transforms | |
import os.path | |
import numpy as np | |
import cv2 | |
from torch.utils.data import Dataset | |
import random | |
from .__base_dataset__ import BaseDataset | |
class ScanNetDataset(BaseDataset): | |
def __init__(self, cfg, phase, **kwargs): | |
super(ScanNetDataset, self).__init__( | |
cfg=cfg, | |
phase=phase, | |
**kwargs) | |
self.metric_scale = cfg.metric_scale | |
# def get_data_for_test(self, idx): | |
# anno = self.annotations['files'][idx] | |
# curr_rgb_path = os.path.join(self.data_root, anno['rgb']) | |
# curr_depth_path = os.path.join(self.depth_root, anno['depth']) | |
# meta_data = self.load_meta_data(anno) | |
# ori_curr_intrinsic = meta_data['cam_in'] | |
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path) | |
# # curr_rgb = cv2.resize(curr_rgb, dsize=(640, 480), interpolation=cv2.INTER_LINEAR) | |
# ori_h, ori_w, _ = curr_rgb.shape | |
# # create camera model | |
# curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic) | |
# # load tmpl rgb info | |
# # tmpl_annos = self.load_tmpl_annos(anno, curr_rgb, meta_data) | |
# # tmpl_rgb = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs | |
# transform_paras = dict() | |
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms( | |
# images=[curr_rgb, ], | |
# labels=[curr_depth, ], | |
# intrinsics=[ori_curr_intrinsic,], | |
# cam_models=[curr_cam_model, ], | |
# transform_paras=transform_paras) | |
# # depth in original size | |
# depth_out = self.clip_depth(curr_depth) * self.depth_range[1] | |
# filename = os.path.basename(anno['rgb']) | |
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) | |
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
# scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0 | |
# cam_models_stacks = [ | |
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() | |
# for i in [2, 4, 8, 16, 32] | |
# ] | |
# raw_rgb = torch.from_numpy(curr_rgb) | |
# data = dict(input=rgbs[0], | |
# target=depth_out, | |
# intrinsic=curr_intrinsic_mat, | |
# filename=filename, | |
# dataset=self.data_name, | |
# cam_model=cam_models_stacks, | |
# ref_input=rgbs[1:], | |
# tmpl_flg=False, | |
# pad=pad, | |
# scale=scale_ratio, | |
# raw_rgb=raw_rgb, | |
# normal =np.zeros_like(curr_rgb.transpose((2,0,1))), | |
# ) | |
# return data | |
def get_data_for_test(self, idx: int, test_mode=True): | |
anno = self.annotations['files'][idx] | |
meta_data = self.load_meta_data(anno) | |
data_path = self.load_data_path(meta_data) | |
data_batch = self.load_batch(meta_data, data_path, test_mode) | |
# load data | |
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model'] | |
ori_curr_intrinsic = meta_data['cam_in'] | |
# get crop size | |
transform_paras = dict() | |
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms( | |
images=[curr_rgb,], #+ tmpl_rgbs, | |
labels=[curr_depth, ], | |
intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), | |
cam_models=[curr_cam_model, ], | |
transform_paras=transform_paras) | |
# depth in original size and orignial metric*** | |
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) # | |
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool)) | |
filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg' | |
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) | |
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0 | |
cam_models_stacks = [ | |
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() | |
for i in [2, 4, 8, 16, 32] | |
] | |
raw_rgb = torch.from_numpy(curr_rgb) | |
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1))) | |
data = dict(input=rgbs[0], | |
target=depth_out, | |
intrinsic=curr_intrinsic_mat, | |
filename=filename, | |
dataset=self.data_name, | |
cam_model=cam_models_stacks, | |
pad=pad, | |
scale=scale_ratio, | |
raw_rgb=raw_rgb, | |
sample_id=idx, | |
data_path=meta_data['rgb'], | |
inv_depth=inv_depth, | |
normal=curr_normal, | |
) | |
return data | |
def get_data_for_trainval(self, idx: int): | |
anno = self.annotations['files'][idx] | |
meta_data = self.load_meta_data(anno) | |
data_path = self.load_data_path(meta_data) | |
data_batch = self.load_batch(meta_data, data_path, test_mode=False) | |
# if data_path['sem_path'] is not None: | |
# print(self.data_name) | |
curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model'] | |
#curr_stereo_depth = data_batch['curr_stereo_depth'] | |
# A patch for stereo depth dataloader (no need to modify specific datasets) | |
if 'curr_stereo_depth' in data_batch.keys(): | |
curr_stereo_depth = data_batch['curr_stereo_depth'] | |
else: | |
curr_stereo_depth = self.load_stereo_depth_label(None, H=curr_rgb.shape[0], W=curr_rgb.shape[1]) | |
curr_intrinsic = meta_data['cam_in'] | |
# data augmentation | |
transform_paras = dict(random_crop_size = self.random_crop_size) # dict() | |
assert curr_rgb.shape[:2] == curr_depth.shape == curr_normal.shape[:2] == curr_sem.shape | |
rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms( | |
images=[curr_rgb, ], | |
labels=[curr_depth, ], | |
intrinsics=[curr_intrinsic,], | |
cam_models=[curr_cam_model, ], | |
normals = [curr_normal, ], | |
other_labels=[curr_sem, curr_stereo_depth], | |
transform_paras=transform_paras) | |
# process sky masks | |
sem_mask = other_labels[0].int() | |
# clip depth map | |
depth_out = self.normalize_depth(depths[0]) | |
# set the depth of sky region to the invalid | |
depth_out[sem_mask==142] = -1 # self.depth_normalize[1] - 1e-6 | |
# get inverse depth | |
inv_depth = self.depth2invdepth(depth_out, sem_mask==142) | |
filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg' | |
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) | |
cam_models_stacks = [ | |
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() | |
for i in [2, 4, 8, 16, 32] | |
] | |
# stereo_depth | |
stereo_depth_pre_trans = other_labels[1] * (other_labels[1] > 0.3) * (other_labels[1] < 200) | |
stereo_depth = stereo_depth_pre_trans * transform_paras['label_scale_factor'] | |
stereo_depth = self.normalize_depth(stereo_depth) | |
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
data = dict(input=rgbs[0], | |
target=depth_out, | |
intrinsic=curr_intrinsic_mat, | |
filename=filename, | |
dataset=self.data_name, | |
cam_model=cam_models_stacks, | |
pad=torch.tensor(pad), | |
data_type=[self.data_type, ], | |
sem_mask=sem_mask.int(), | |
stereo_depth= stereo_depth, | |
normal=normals[0], | |
inv_depth=inv_depth, | |
scale=transform_paras['label_scale_factor']) | |
return data | |
def load_batch(self, meta_data, data_path, test_mode): | |
# print('############') | |
# print(data_path['rgb_path']) | |
# print(data_path['normal_path']) | |
# print('############') | |
curr_intrinsic = meta_data['cam_in'] | |
# load rgb/depth | |
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'], test_mode) | |
# get semantic labels | |
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth) | |
# create camera model | |
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic) | |
# get normal labels | |
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], test_mode=test_mode) | |
# get depth mask | |
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path']) | |
curr_depth[~depth_mask] = -1 | |
# get stereo depth | |
curr_stereo_depth = self.load_stereo_depth_label(data_path['disp_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) | |
data_batch = dict( | |
curr_rgb = curr_rgb, | |
curr_depth = curr_depth, | |
curr_sem = curr_sem, | |
curr_normal = curr_normal, | |
curr_cam_model=curr_cam_model, | |
curr_stereo_depth=curr_stereo_depth, | |
) | |
return data_batch | |
def load_rgb_depth(self, rgb_path: str, depth_path: str, test_mode: bool): | |
""" | |
Load the rgb and depth map with the paths. | |
""" | |
rgb = self.load_data(rgb_path, is_rgb_img=True) | |
if rgb is None: | |
self.logger.info(f'>>>>{rgb_path} has errors.') | |
depth = self.load_data(depth_path) | |
if depth is None: | |
self.logger.info(f'{depth_path} has errors.') | |
# self.check_data(dict( | |
# rgb_path=rgb, | |
# depth_path=depth, | |
# )) | |
depth = depth.astype(np.float) | |
# if depth.shape != rgb.shape[:2]: | |
# print(f'no-equal in {self.data_name}') | |
# depth = cv2.resize(depth, rgb.shape[::-1][1:]) | |
depth = self.process_depth(depth, rgb, test_mode) | |
return rgb, depth | |
def process_depth(self, depth, rgb, test_mode=False): | |
depth[depth>65500] = 0 | |
depth /= self.metric_scale | |
h, w, _ = rgb.shape # to rgb size | |
if test_mode==False: | |
depth = cv2.resize(depth, (w, h), interpolation=cv2.INTER_NEAREST) | |
return depth | |
def load_norm_label(self, norm_path, H, W, test_mode): | |
if norm_path is None: | |
norm_gt = np.zeros((H, W, 3)).astype(np.float32) | |
else: | |
norm_gt = cv2.imread(norm_path) | |
norm_gt = cv2.cvtColor(norm_gt, cv2.COLOR_BGR2RGB) | |
norm_gt = np.array(norm_gt).astype(np.uint8) | |
mask_path = 'orient-mask'.join(norm_path.rsplit('normal', 1)) | |
mask_gt = cv2.imread(mask_path) | |
mask_gt = np.array(mask_gt).astype(np.uint8) | |
valid_mask = np.logical_not( | |
np.logical_and( | |
np.logical_and( | |
mask_gt[:, :, 0] == 0, mask_gt[:, :, 1] == 0), | |
mask_gt[:, :, 2] == 0)) | |
valid_mask = valid_mask[:, :, np.newaxis] | |
# norm_valid_mask = np.logical_not( | |
# np.logical_and( | |
# np.logical_and( | |
# norm_gt[:, :, 0] == 0, norm_gt[:, :, 1] == 0), | |
# norm_gt[:, :, 2] == 0)) | |
# norm_valid_mask = norm_valid_mask[:, :, np.newaxis] | |
norm_gt = ((norm_gt.astype(np.float32) / 255.0) * 2.0) - 1.0 | |
norm_valid_mask = (np.linalg.norm(norm_gt, axis=2, keepdims=True) > 0.5) * valid_mask | |
norm_gt = norm_gt * norm_valid_mask | |
if test_mode==False: | |
norm_gt = cv2.resize(norm_gt, (W, H), interpolation=cv2.INTER_NEAREST) | |
return norm_gt | |
if __name__ == '__main__': | |
from mmcv.utils import Config | |
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') | |
dataset_i = NYUDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) | |
print(dataset_i) | |