Spaces:
Running
Running
File size: 886 Bytes
a233a7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import gradio as gr
from transformers import pipeline
from PIL import Image
# Load the pipeline for age classification
pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2")
# Define the prediction function
def predict(input_img):
# Get the predictions
predictions = pipe(input_img)
# Format the predictions into a human-readable string
result_str = "\n".join([f"{p['label']}: {p['score']:.4f}" for p in predictions])
return result_str
# Create a Gradio interface
iface = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"), # Define input type as an image
outputs=gr.Textbox(label="Class Confidence Scores", interactive=False), # Output as plain text
) # Set live=True to update results as soon as the image is uploaded
# Launch the Gradio app
iface.launch()
|