Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,021 Bytes
da87199 1bf66d9 da87199 05dc4f5 da87199 1bf66d9 5718b5c 75b15f6 5718b5c 00dba49 e80ec12 417b22d 05dc4f5 417b22d c19847c 417b22d 657527f 0889c6d 657527f 0889c6d 4bf30b7 0889c6d 657527f 417b22d beb0aac 417b22d 05dc4f5 417b22d beb0aac 417b22d 1bf66d9 417b22d 371a9fc 1bf66d9 417b22d beb0aac 41f2f65 beb0aac 417b22d beb0aac 417b22d beb0aac 417b22d 371a9fc 1bf66d9 417b22d 371a9fc 6962585 371a9fc 6962585 dde0f10 6962585 371a9fc beb0aac 6962585 dde0f10 6962585 dde0f10 6962585 beb0aac 417b22d c19847c 1bf66d9 c19847c 56479f5 1bf66d9 dfd8114 4bf30b7 1bf66d9 1670280 1bf66d9 da87199 5718b5c c19847c 5718b5c c19847c 75b15f6 1bf66d9 75b15f6 ced8ba1 5718b5c 75b15f6 1670280 75b15f6 1bf66d9 75b15f6 5718b5c 75b15f6 1670280 75b15f6 00dba49 1bf66d9 5718b5c 00dba49 ced8ba1 5718b5c ced8ba1 00dba49 5718b5c c19847c 1bf66d9 c19847c ced8ba1 c19847c 1bf66d9 e80ec12 1bf66d9 ced8ba1 c19847c 1bf66d9 c19847c 1bf66d9 da87199 1bf66d9 da87199 1bf66d9 ced8ba1 1bf66d9 ced8ba1 1bf66d9 da87199 e80ec12 1bf66d9 e80ec12 1bf66d9 e80ec12 c19847c 1bf66d9 c19847c da87199 417b22d e80ec12 ced8ba1 1bf66d9 05dc4f5 1bf66d9 657527f 05dc4f5 1bf66d9 e80ec12 1bf66d9 ced8ba1 1bf66d9 e80ec12 1bf66d9 e80ec12 ced8ba1 dde0f10 ced8ba1 1bf66d9 ced8ba1 1bf66d9 4bf30b7 ced8ba1 1bf66d9 ced8ba1 1bf66d9 ced8ba1 dde0f10 e80ec12 1bf66d9 e80ec12 1bf66d9 e80ec12 4bf30b7 c19847c 1bf66d9 c19847c da87199 5eb62f9 9de7a98 c19847c f89a031 d36bd86 5eb62f9 d36bd86 c19847c f89a031 1bf66d9 f89a031 c19847c f89a031 1bf66d9 f89a031 c19847c f89a031 1bf66d9 f89a031 c19847c da87199 c19847c 1bf66d9 c19847c 417b22d 1bf66d9 417b22d 1bf66d9 dc16673 1bf66d9 417b22d e828578 dc16673 417b22d dc16673 1bf66d9 dc16673 417b22d 1bf66d9 fcb9dfb 417b22d fcb9dfb 1ddc7cb 417b22d bdad5ad 417b22d 1bf66d9 417b22d 1bf66d9 417b22d bdad5ad 417b22d dfd8114 9a70f56 417b22d 9a70f56 da87199 9a70f56 223aa70 1bf66d9 9a70f56 1bf66d9 9a70f56 1bf66d9 9a70f56 1bf66d9 9a70f56 1bf66d9 9a70f56 e828578 9a70f56 417b22d e828578 1bf66d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
#!/usr/bin/env python
import os
import re
import tempfile
import gc
from collections.abc import Iterator
from threading import Thread
import json
import requests
import gradio as gr
import spaces
import torch
from loguru import logger
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
# CSV/TXT ๋ถ์
import pandas as pd
# PDF ํ
์คํธ ์ถ์ถ
import PyPDF2
##############################################################################
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ
##############################################################################
def clear_cuda_cache():
"""CUDA ์บ์๋ฅผ ๋ช
์์ ์ผ๋ก ๋น์๋๋ค."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
##############################################################################
# ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด)
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
"""
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ
3) ์ต๋ top_k๊ฐ๋ง
"""
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
tokens = text.split()
key_tokens = tokens[:top_k]
return " ".join(key_tokens)
##############################################################################
# SerpHouse Live endpoint ํธ์ถ
##############################################################################
def do_web_search(query: str) -> str:
"""
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ
"""
try:
url = "https://api.serphouse.com/serp/live"
params = {
"q": query,
"domain": "google.com",
"serp_type": "web",
"device": "desktop",
"lang": "en",
"num": "20"
}
headers = {
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
}
logger.info(f"SerpHouse API ํธ์ถ ์ค... ๊ฒ์์ด: {query}")
response = requests.get(url, headers=headers, params=params, timeout=60)
response.raise_for_status()
data = response.json()
# ๋ค์ํ ์๋ต ๊ตฌ์กฐ ์ฒ๋ฆฌ
results = data.get("results", {})
organic = None
if isinstance(results, dict) and "organic" in results:
organic = results["organic"]
elif isinstance(results, dict) and "results" in results:
if isinstance(results["results"], dict) and "organic" in results["results"]:
organic = results["results"]["organic"]
elif "organic" in data:
organic = data["organic"]
if not organic:
logger.warning("์๋ต์์ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค.")
return "No web search results found or unexpected API response structure."
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ
์คํธ ๊ธธ์ด ์ต์ ํ
max_results = min(20, len(organic))
limited_organic = organic[:max_results]
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅ
summary_lines = []
for idx, item in enumerate(limited_organic, start=1):
title = item.get("title", "No title")
link = item.get("link", "#")
snippet = item.get("snippet", "No description")
displayed_link = item.get("displayed_link", link)
summary_lines.append(
f"### Result {idx}: {title}\n\n"
f"{snippet}\n\n"
f"**์ถ์ฒ**: [{displayed_link}]({link})\n\n"
f"---\n"
)
instructions = """
# ์น ๊ฒ์ ๊ฒฐ๊ณผ
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์:
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...")
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์
"""
search_results = instructions + "\n".join(summary_lines)
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ")
return search_results
except Exception as e:
logger.error(f"Web search failed: {e}")
return f"Web search failed: {str(e)}"
##############################################################################
# ๋ชจ๋ธ/ํ ํฌ๋์ด์ ๋ก๋ฉ (ํ
์คํธ ์ ์ฉ)
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-1B")
# ํ
์คํธ ์ ์ฉ ๋ชจ๋ธ๋ก ๋ก๋
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager"
)
##############################################################################
# CSV, TXT, PDF ๋ถ์ ํจ์
##############################################################################
def analyze_csv_file(path: str) -> str:
"""CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์."""
try:
df = pd.read_csv(path)
if df.shape[0] > 50 or df.shape[1] > 10:
df = df.iloc[:50, :10]
df_str = df.to_string()
if len(df_str) > MAX_CONTENT_CHARS:
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
except Exception as e:
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
def analyze_txt_file(path: str) -> str:
"""TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์."""
try:
with open(path, "r", encoding="utf-8") as f:
text = f.read()
if len(text) > MAX_CONTENT_CHARS:
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
except Exception as e:
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
def pdf_to_markdown(pdf_path: str) -> str:
"""PDF ํ
์คํธ๋ฅผ Markdown์ผ๋ก ๋ณํ. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ."""
text_chunks = []
try:
with open(pdf_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
max_pages = min(5, len(reader.pages))
for page_num in range(max_pages):
page = reader.pages[page_num]
page_text = page.extract_text() or ""
page_text = page_text.strip()
if page_text:
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
if len(reader.pages) > max_pages:
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
except Exception as e:
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
full_text = "\n".join(text_chunks)
if len(full_text) > MAX_CONTENT_CHARS:
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
##############################################################################
# ๋ฌธ์ ํ์ผ ํ์ธ
##############################################################################
def is_document_file(file_path: str) -> bool:
return (
file_path.lower().endswith(".pdf")
or file_path.lower().endswith(".csv")
or file_path.lower().endswith(".txt")
)
##############################################################################
# ๋ฉ์์ง ์ฒ๋ฆฌ (ํ
์คํธ ๋ฐ ๋ฌธ์ ํ์ผ๋ง)
##############################################################################
def process_new_user_message(message: dict) -> str:
"""์ฌ์ฉ์ ๋ฉ์์ง์ ์ฒจ๋ถ๋ ๋ฌธ์ ํ์ผ๋ค์ ์ฒ๋ฆฌํ์ฌ ํ๋์ ํ
์คํธ๋ก ๊ฒฐํฉ"""
content_parts = [message["text"]]
if message.get("files"):
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
for csv_path in csv_files:
csv_analysis = analyze_csv_file(csv_path)
content_parts.append(csv_analysis)
for txt_path in txt_files:
txt_analysis = analyze_txt_file(txt_path)
content_parts.append(txt_analysis)
for pdf_path in pdf_files:
pdf_markdown = pdf_to_markdown(pdf_path)
content_parts.append(pdf_markdown)
return "\n\n".join(content_parts)
##############################################################################
# ๋ํ ํ์คํ ๋ฆฌ ์ฒ๋ฆฌ
##############################################################################
def process_history(history: list[dict]) -> str:
"""๋ํ ํ์คํ ๋ฆฌ๋ฅผ ํ
์คํธ ํ์์ผ๋ก ๋ณํ"""
conversation_text = ""
for item in history:
if item["role"] == "assistant":
conversation_text += f"\nAssistant: {item['content']}\n"
else: # user
content = item["content"]
if isinstance(content, str):
conversation_text += f"\nUser: {content}\n"
elif isinstance(content, list) and len(content) > 0:
# ํ์ผ ๊ฒฝ๋ก๋ง ํ์
file_path = content[0]
conversation_text += f"\nUser: [File: {os.path.basename(file_path)}]\n"
return conversation_text
##############################################################################
# ๋ชจ๋ธ ์์ฑ ํจ์
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
"""๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด"""
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError:
raise RuntimeError(
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. "
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์."
)
finally:
clear_cuda_cache()
##############################################################################
# ๋ฉ์ธ ์ถ๋ก ํจ์ (ํ
์คํธ ์ ์ฉ)
##############################################################################
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str = "",
max_new_tokens: int = 512,
use_web_search: bool = False,
web_search_query: str = "",
) -> Iterator[str]:
try:
# ์ ์ฒด ํ๋กฌํํธ ๊ตฌ์ฑ
full_prompt = ""
# ์์คํ
ํ๋กฌํํธ
if system_prompt.strip():
full_prompt += f"System: {system_prompt.strip()}\n\n"
# ์น ๊ฒ์ ์ํ
if use_web_search:
user_text = message["text"]
ws_query = extract_keywords(user_text, top_k=5)
if ws_query.strip():
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
ws_result = do_web_search(ws_query)
full_prompt += f"[Web Search Results]\n{ws_result}\n\n"
full_prompt += "[์ค์: ์ ๊ฒ์๊ฒฐ๊ณผ์ ์ถ์ฒ๋ฅผ ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n"
# ๋ํ ํ์คํ ๋ฆฌ
if history:
conversation_history = process_history(history)
full_prompt += conversation_history
# ํ์ฌ ์ฌ์ฉ์ ๋ฉ์์ง
user_content = process_new_user_message(message)
full_prompt += f"\nUser: {user_content}\nAssistant:"
# ํ ํฐํ
inputs = tokenizer(
full_prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_INPUT_LENGTH
).to(device=model.device)
# ์คํธ๋ฆฌ๋ฐ ์ค์
streamer = TextIteratorStreamer(
tokenizer,
timeout=30.0,
skip_prompt=True,
skip_special_tokens=True
)
gen_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
# ๋ณ๋ ์ค๋ ๋์์ ์์ฑ
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
t.start()
# ์คํธ๋ฆฌ๋ฐ ์ถ๋ ฅ
output = ""
for new_text in streamer:
output += new_text
yield output
except Exception as e:
logger.error(f"Error in run: {str(e)}")
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
finally:
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
try:
del inputs
except:
pass
clear_cuda_cache()
##############################################################################
# ์์๋ค (ํ
์คํธ ๋ฐ ๋ฌธ์ ํ์ผ๋ง)
##############################################################################
examples = [
[
{
"text": "Compare the contents of the two PDF files.",
"files": [
"assets/additional-examples/before.pdf",
"assets/additional-examples/after.pdf",
],
}
],
[
{
"text": "Summarize and analyze the contents of the CSV file.",
"files": ["assets/additional-examples/sample-csv.csv"],
}
],
[
{
"text": "What are the key findings from this research paper?",
"files": ["assets/additional-examples/research.pdf"],
}
],
[
{
"text": "Analyze the data trends in this CSV file.",
"files": ["assets/additional-examples/data.csv"],
}
],
[
{
"text": "Summarize the main points from this text document.",
"files": ["assets/additional-examples/document.txt"],
}
],
]
##############################################################################
# Gradio UI
##############################################################################
css = """
.gradio-container {
background: rgba(255, 255, 255, 0.7);
padding: 30px 40px;
margin: 20px auto;
width: 100% !important;
max-width: none !important;
}
.fillable {
width: 100% !important;
max-width: 100% !important;
}
body {
background: transparent;
margin: 0;
padding: 0;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
}
button, .btn {
background: transparent !important;
border: 1px solid #ddd;
color: #333;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
cursor: pointer;
}
button:hover, .btn:hover {
background: rgba(0, 0, 0, 0.05) !important;
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1984-1B (Text Only) </h1>
<p align="center" style="font-size:1.1em; color:#555;">
โ
Agentic AI Platform โ
Reasoning โ
Text Analysis โ
Deep-Research & RAG <br>
โ
Document Processing (PDF, CSV, TXT) โ
Web Search Integration<br>
Operates on an โ
'NVIDIA L40s / A100(ZeroGPU) GPU' as an independent local server<br>
@Model Repository: VIDraft/Gemma-3-R1984-1B, @Based by 'Google Gemma-3-1b'
</p>
"""
with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
gr.Markdown(title_html)
web_search_checkbox = gr.Checkbox(
label="Deep Research",
value=False
)
system_prompt_box = gr.Textbox(
lines=3,
value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
visible=False
)
max_tokens_slider = gr.Slider(
label="Max New Tokens",
minimum=100,
maximum=8000,
step=50,
value=1000,
visible=False
)
web_search_text = gr.Textbox(
lines=1,
label="(Unused) Web Search Query",
placeholder="No direct input needed",
visible=False
)
chat = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1),
textbox=gr.MultimodalTextbox(
file_types=[".csv", ".txt", ".pdf"], # ์ด๋ฏธ์ง/๋น๋์ค ์ ๊ฑฐ
file_count="multiple",
autofocus=True
),
multimodal=True,
additional_inputs=[
system_prompt_box,
max_tokens_slider,
web_search_checkbox,
web_search_text,
],
stop_btn=False,
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths=None,
delete_cache=(1800, 1800),
)
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
gr.Markdown("### Example Inputs (click to load)")
if __name__ == "__main__":
demo.launch() |