File size: 18,021 Bytes
da87199
 
 
 
 
1bf66d9
da87199
 
05dc4f5
 
da87199
 
 
 
1bf66d9
5718b5c
 
75b15f6
5718b5c
00dba49
 
e80ec12
 
 
 
 
 
 
 
 
417b22d
05dc4f5
417b22d
c19847c
417b22d
657527f
0889c6d
657527f
 
0889c6d
4bf30b7
0889c6d
 
 
 
657527f
 
 
 
417b22d
beb0aac
417b22d
 
 
05dc4f5
 
417b22d
 
 
beb0aac
417b22d
 
 
1bf66d9
417b22d
371a9fc
1bf66d9
417b22d
beb0aac
 
 
 
 
 
 
41f2f65
beb0aac
 
 
 
 
417b22d
beb0aac
 
 
 
 
 
 
 
 
 
417b22d
beb0aac
 
417b22d
371a9fc
 
 
 
1bf66d9
417b22d
371a9fc
 
 
 
6962585
371a9fc
 
6962585
 
dde0f10
6962585
371a9fc
beb0aac
6962585
dde0f10
 
 
 
 
 
6962585
 
 
dde0f10
6962585
beb0aac
417b22d
 
 
 
c19847c
1bf66d9
c19847c
56479f5
1bf66d9
dfd8114
4bf30b7
1bf66d9
 
 
1670280
 
 
1bf66d9
da87199
5718b5c
c19847c
5718b5c
c19847c
75b15f6
1bf66d9
75b15f6
 
ced8ba1
 
5718b5c
75b15f6
 
1670280
75b15f6
 
 
 
1bf66d9
75b15f6
 
5718b5c
75b15f6
 
1670280
75b15f6
 
 
00dba49
1bf66d9
5718b5c
00dba49
 
 
ced8ba1
 
 
5718b5c
 
 
ced8ba1
 
 
 
 
00dba49
 
 
5718b5c
 
 
 
 
 
c19847c
1bf66d9
c19847c
ced8ba1
c19847c
 
 
 
 
 
1bf66d9
 
 
 
 
e80ec12
1bf66d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced8ba1
c19847c
1bf66d9
c19847c
1bf66d9
 
 
 
da87199
 
1bf66d9
 
da87199
 
1bf66d9
ced8ba1
1bf66d9
ced8ba1
1bf66d9
 
 
da87199
e80ec12
1bf66d9
e80ec12
 
1bf66d9
e80ec12
 
 
 
 
 
 
 
 
 
c19847c
1bf66d9
c19847c
da87199
417b22d
 
 
 
 
 
 
 
e80ec12
ced8ba1
1bf66d9
 
 
 
05dc4f5
1bf66d9
 
 
657527f
 
 
05dc4f5
 
 
1bf66d9
 
e80ec12
1bf66d9
 
 
 
 
 
 
 
 
 
 
 
ced8ba1
1bf66d9
 
 
e80ec12
1bf66d9
 
 
 
 
 
 
e80ec12
ced8ba1
dde0f10
ced8ba1
 
1bf66d9
 
 
ced8ba1
1bf66d9
 
4bf30b7
ced8ba1
1bf66d9
 
ced8ba1
 
 
 
1bf66d9
ced8ba1
 
dde0f10
e80ec12
 
1bf66d9
e80ec12
1bf66d9
e80ec12
 
 
4bf30b7
c19847c
1bf66d9
c19847c
da87199
 
 
5eb62f9
9de7a98
 
 
c19847c
f89a031
 
d36bd86
 
5eb62f9
d36bd86
 
c19847c
f89a031
 
1bf66d9
 
f89a031
c19847c
f89a031
 
1bf66d9
 
f89a031
c19847c
f89a031
 
1bf66d9
 
f89a031
c19847c
da87199
 
c19847c
1bf66d9
c19847c
417b22d
 
1bf66d9
417b22d
1bf66d9
dc16673
1bf66d9
417b22d
e828578
dc16673
 
417b22d
dc16673
1bf66d9
dc16673
 
 
 
417b22d
 
1bf66d9
 
fcb9dfb
417b22d
 
 
 
 
 
 
fcb9dfb
1ddc7cb
417b22d
bdad5ad
417b22d
1bf66d9
417b22d
1bf66d9
 
 
 
417b22d
bdad5ad
417b22d
dfd8114
9a70f56
417b22d
9a70f56
 
 
 
da87199
9a70f56
 
223aa70
1bf66d9
9a70f56
 
 
 
 
 
 
 
1bf66d9
9a70f56
 
 
 
 
 
1bf66d9
9a70f56
 
 
 
 
1bf66d9
9a70f56
1bf66d9
9a70f56
 
 
 
 
 
 
 
 
e828578
9a70f56
 
 
 
 
 
 
 
 
 
 
 
417b22d
e828578
1bf66d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#!/usr/bin/env python

import os
import re
import tempfile
import gc
from collections.abc import Iterator
from threading import Thread
import json
import requests
import gradio as gr
import spaces
import torch
from loguru import logger
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer

# CSV/TXT ๋ถ„์„
import pandas as pd
# PDF ํ…์ŠคํŠธ ์ถ”์ถœ
import PyPDF2

##############################################################################
# ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜ ์ถ”๊ฐ€
##############################################################################
def clear_cuda_cache():
    """CUDA ์บ์‹œ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋น„์›๋‹ˆ๋‹ค."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

##############################################################################
# ๊ฐ„๋‹จํ•œ ํ‚ค์›Œ๋“œ ์ถ”์ถœ ํ•จ์ˆ˜ (ํ•œ๊ธ€ + ์•ŒํŒŒ๋ฒณ + ์ˆซ์ž + ๊ณต๋ฐฑ ๋ณด์กด)
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
    """
    1) ํ•œ๊ธ€(๊ฐ€-ํžฃ), ์˜์–ด(a-zA-Z), ์ˆซ์ž(0-9), ๊ณต๋ฐฑ๋งŒ ๋‚จ๊น€
    2) ๊ณต๋ฐฑ ๊ธฐ์ค€ ํ† ํฐ ๋ถ„๋ฆฌ
    3) ์ตœ๋Œ€ top_k๊ฐœ๋งŒ
    """
    text = re.sub(r"[^a-zA-Z0-9๊ฐ€-ํžฃ\s]", "", text)
    tokens = text.split()
    key_tokens = tokens[:top_k]
    return " ".join(key_tokens)

##############################################################################
# SerpHouse Live endpoint ํ˜ธ์ถœ
##############################################################################
def do_web_search(query: str) -> str:
    """
    ์ƒ์œ„ 20๊ฐœ 'organic' ๊ฒฐ๊ณผ item ์ „์ฒด(์ œ๋ชฉ, link, snippet ๋“ฑ)๋ฅผ
    JSON ๋ฌธ์ž์—ด ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜
    """
    try:
        url = "https://api.serphouse.com/serp/live"
        
        params = {
            "q": query,
            "domain": "google.com",
            "serp_type": "web",
            "device": "desktop",
            "lang": "en",
            "num": "20"
        }
        
        headers = {
            "Authorization": f"Bearer {SERPHOUSE_API_KEY}"
        }
        
        logger.info(f"SerpHouse API ํ˜ธ์ถœ ์ค‘... ๊ฒ€์ƒ‰์–ด: {query}")
        
        response = requests.get(url, headers=headers, params=params, timeout=60)
        response.raise_for_status()
        
        data = response.json()
        
        # ๋‹ค์–‘ํ•œ ์‘๋‹ต ๊ตฌ์กฐ ์ฒ˜๋ฆฌ
        results = data.get("results", {})
        organic = None
        
        if isinstance(results, dict) and "organic" in results:
            organic = results["organic"]
        elif isinstance(results, dict) and "results" in results:
            if isinstance(results["results"], dict) and "organic" in results["results"]:
                organic = results["results"]["organic"]
        elif "organic" in data:
            organic = data["organic"]
            
        if not organic:
            logger.warning("์‘๋‹ต์—์„œ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            return "No web search results found or unexpected API response structure."

        # ๊ฒฐ๊ณผ ์ˆ˜ ์ œํ•œ ๋ฐ ์ปจํ…์ŠคํŠธ ๊ธธ์ด ์ตœ์ ํ™”
        max_results = min(20, len(organic))
        limited_organic = organic[:max_results]
        
        # ๊ฒฐ๊ณผ ํ˜•์‹ ๊ฐœ์„  - ๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ์ถœ๋ ฅ
        summary_lines = []
        for idx, item in enumerate(limited_organic, start=1):
            title = item.get("title", "No title")
            link = item.get("link", "#")
            snippet = item.get("snippet", "No description")
            displayed_link = item.get("displayed_link", link)
            
            summary_lines.append(
                f"### Result {idx}: {title}\n\n"
                f"{snippet}\n\n"
                f"**์ถœ์ฒ˜**: [{displayed_link}]({link})\n\n"
                f"---\n"
            )
        
        instructions = """
# ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ
์•„๋ž˜๋Š” ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์— ๋‹ต๋ณ€ํ•  ๋•Œ ์ด ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์„ธ์š”:
1. ๊ฐ ๊ฒฐ๊ณผ์˜ ์ œ๋ชฉ, ๋‚ด์šฉ, ์ถœ์ฒ˜ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•˜์„ธ์š”
2. ๋‹ต๋ณ€์— ๊ด€๋ จ ์ •๋ณด์˜ ์ถœ์ฒ˜๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ธ์šฉํ•˜์„ธ์š” (์˜ˆ: "X ์ถœ์ฒ˜์— ๋”ฐ๋ฅด๋ฉด...")
3. ์‘๋‹ต์— ์‹ค์ œ ์ถœ์ฒ˜ ๋งํฌ๋ฅผ ํฌํ•จํ•˜์„ธ์š”
4. ์—ฌ๋Ÿฌ ์ถœ์ฒ˜์˜ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•˜์„ธ์š”
"""
        
        search_results = instructions + "\n".join(summary_lines)
        logger.info(f"๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐœ ์ฒ˜๋ฆฌ ์™„๋ฃŒ")
        return search_results
    
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"

##############################################################################
# ๋ชจ๋ธ/ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ (ํ…์ŠคํŠธ ์ „์šฉ)
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-1B")

# ํ…์ŠคํŠธ ์ „์šฉ ๋ชจ๋ธ๋กœ ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"
)

##############################################################################
# CSV, TXT, PDF ๋ถ„์„ ํ•จ์ˆ˜
##############################################################################
def analyze_csv_file(path: str) -> str:
    """CSV ํŒŒ์ผ์„ ์ „์ฒด ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜. ๋„ˆ๋ฌด ๊ธธ ๊ฒฝ์šฐ ์ผ๋ถ€๋งŒ ํ‘œ์‹œ."""
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"

def analyze_txt_file(path: str) -> str:
    """TXT ํŒŒ์ผ ์ „๋ฌธ ์ฝ๊ธฐ. ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ผ๋ถ€๋งŒ ํ‘œ์‹œ."""
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"

def pdf_to_markdown(pdf_path: str) -> str:
    """PDF ํ…์ŠคํŠธ๋ฅผ Markdown์œผ๋กœ ๋ณ€ํ™˜. ํŽ˜์ด์ง€๋ณ„๋กœ ๊ฐ„๋‹จํžˆ ํ…์ŠคํŠธ ์ถ”์ถœ."""
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page = reader.pages[page_num]
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"

##############################################################################
# ๋ฌธ์„œ ํŒŒ์ผ ํ™•์ธ
##############################################################################
def is_document_file(file_path: str) -> bool:
    return (
        file_path.lower().endswith(".pdf")
        or file_path.lower().endswith(".csv")
        or file_path.lower().endswith(".txt")
    )

##############################################################################
# ๋ฉ”์‹œ์ง€ ์ฒ˜๋ฆฌ (ํ…์ŠคํŠธ ๋ฐ ๋ฌธ์„œ ํŒŒ์ผ๋งŒ)
##############################################################################
def process_new_user_message(message: dict) -> str:
    """์‚ฌ์šฉ์ž ๋ฉ”์‹œ์ง€์™€ ์ฒจ๋ถ€๋œ ๋ฌธ์„œ ํŒŒ์ผ๋“ค์„ ์ฒ˜๋ฆฌํ•˜์—ฌ ํ•˜๋‚˜์˜ ํ…์ŠคํŠธ๋กœ ๊ฒฐํ•ฉ"""
    
    content_parts = [message["text"]]
    
    if message.get("files"):
        csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
        txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
        pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
        
        for csv_path in csv_files:
            csv_analysis = analyze_csv_file(csv_path)
            content_parts.append(csv_analysis)
        
        for txt_path in txt_files:
            txt_analysis = analyze_txt_file(txt_path)
            content_parts.append(txt_analysis)
        
        for pdf_path in pdf_files:
            pdf_markdown = pdf_to_markdown(pdf_path)
            content_parts.append(pdf_markdown)
    
    return "\n\n".join(content_parts)

##############################################################################
# ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ ์ฒ˜๋ฆฌ
##############################################################################
def process_history(history: list[dict]) -> str:
    """๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ๋ฅผ ํ…์ŠคํŠธ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜"""
    conversation_text = ""
    
    for item in history:
        if item["role"] == "assistant":
            conversation_text += f"\nAssistant: {item['content']}\n"
        else:  # user
            content = item["content"]
            if isinstance(content, str):
                conversation_text += f"\nUser: {content}\n"
            elif isinstance(content, list) and len(content) > 0:
                # ํŒŒ์ผ ๊ฒฝ๋กœ๋งŒ ํ‘œ์‹œ
                file_path = content[0]
                conversation_text += f"\nUser: [File: {os.path.basename(file_path)}]\n"
    
    return conversation_text

##############################################################################
# ๋ชจ๋ธ ์ƒ์„ฑ ํ•จ์ˆ˜
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
    """๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ OutOfMemoryError๋ฅผ ์žก์•„์ฃผ๊ธฐ ์œ„ํ•ด"""
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError(
            "[OutOfMemoryError] GPU ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. "
            "Max New Tokens์„ ์ค„์ด๊ฑฐ๋‚˜, ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด๋ฅผ ์ค„์—ฌ์ฃผ์„ธ์š”."
        )
    finally:
        clear_cuda_cache()

##############################################################################
# ๋ฉ”์ธ ์ถ”๋ก  ํ•จ์ˆ˜ (ํ…์ŠคํŠธ ์ „์šฉ)
##############################################################################
@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
) -> Iterator[str]:
    
    try:
        # ์ „์ฒด ํ”„๋กฌํ”„ํŠธ ๊ตฌ์„ฑ
        full_prompt = ""
        
        # ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ
        if system_prompt.strip():
            full_prompt += f"System: {system_prompt.strip()}\n\n"
        
        # ์›น ๊ฒ€์ƒ‰ ์ˆ˜ํ–‰
        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text, top_k=5)
            if ws_query.strip():
                logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                full_prompt += f"[Web Search Results]\n{ws_result}\n\n"
                full_prompt += "[์ค‘์š”: ์œ„ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ์˜ ์ถœ์ฒ˜๋ฅผ ์ธ์šฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.]\n\n"
        
        # ๋Œ€ํ™” ํžˆ์Šคํ† ๋ฆฌ
        if history:
            conversation_history = process_history(history)
            full_prompt += conversation_history
        
        # ํ˜„์žฌ ์‚ฌ์šฉ์ž ๋ฉ”์‹œ์ง€
        user_content = process_new_user_message(message)
        full_prompt += f"\nUser: {user_content}\nAssistant:"
        
        # ํ† ํฐํ™”
        inputs = tokenizer(
            full_prompt,
            return_tensors="pt",
            truncation=True,
            max_length=MAX_INPUT_LENGTH
        ).to(device=model.device)
        
        # ์ŠคํŠธ๋ฆฌ๋ฐ ์„ค์ •
        streamer = TextIteratorStreamer(
            tokenizer,
            timeout=30.0,
            skip_prompt=True,
            skip_special_tokens=True
        )
        
        gen_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
        )
        
        # ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ ์ƒ์„ฑ
        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()
        
        # ์ŠคํŠธ๋ฆฌ๋ฐ ์ถœ๋ ฅ
        output = ""
        for new_text in streamer:
            output += new_text
            yield output
            
    except Exception as e:
        logger.error(f"Error in run: {str(e)}")
        yield f"์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
    
    finally:
        # ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        try:
            del inputs
        except:
            pass
        clear_cuda_cache()

##############################################################################
# ์˜ˆ์‹œ๋“ค (ํ…์ŠคํŠธ ๋ฐ ๋ฌธ์„œ ํŒŒ์ผ๋งŒ)
##############################################################################
examples = [
    [
        {
            "text": "Compare the contents of the two PDF files.",
            "files": [
                "assets/additional-examples/before.pdf",
                "assets/additional-examples/after.pdf",
            ],
        }
    ],
    [
        {
            "text": "Summarize and analyze the contents of the CSV file.",
            "files": ["assets/additional-examples/sample-csv.csv"],
        }
    ],
    [
        {
            "text": "What are the key findings from this research paper?",
            "files": ["assets/additional-examples/research.pdf"],
        }
    ],
    [
        {
            "text": "Analyze the data trends in this CSV file.",
            "files": ["assets/additional-examples/data.csv"],
        }
    ],
    [
        {
            "text": "Summarize the main points from this text document.",
            "files": ["assets/additional-examples/document.txt"],
        }
    ],
]

##############################################################################
# Gradio UI
##############################################################################
css = """
.gradio-container {
    background: rgba(255, 255, 255, 0.7);
    padding: 30px 40px;
    margin: 20px auto;
    width: 100% !important;
    max-width: none !important;
}
.fillable {
    width: 100% !important; 
    max-width: 100% !important; 
}
body {
    background: transparent;
    margin: 0;
    padding: 0;
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
}
button, .btn {
    background: transparent !important;
    border: 1px solid #ddd;
    color: #333;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    cursor: pointer;
}
button:hover, .btn:hover {
    background: rgba(0, 0, 0, 0.05) !important;
}
"""

title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐Ÿค— Gemma3-R1984-1B (Text Only) </h1>
<p align="center" style="font-size:1.1em; color:#555;">
    โœ…Agentic AI Platform โœ…Reasoning โœ…Text Analysis โœ…Deep-Research & RAG <br>
    โœ…Document Processing (PDF, CSV, TXT) โœ…Web Search Integration<br>
    Operates on an โœ…'NVIDIA L40s / A100(ZeroGPU) GPU' as an independent local server<br>
    @Model Repository: VIDraft/Gemma-3-R1984-1B, @Based by 'Google Gemma-3-1b'
</p>
"""

with gr.Blocks(css=css, title="Gemma3-R1984-1B") as demo:
    gr.Markdown(title_html)

    web_search_checkbox = gr.Checkbox(
        label="Deep Research",
        value=False
    )

    system_prompt_box = gr.Textbox(
        lines=3,
        value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
        visible=False
    )
    
    max_tokens_slider = gr.Slider(
        label="Max New Tokens",
        minimum=100,
        maximum=8000,
        step=50,
        value=1000,
        visible=False
    )
    
    web_search_text = gr.Textbox(
        lines=1,
        label="(Unused) Web Search Query",
        placeholder="No direct input needed",
        visible=False
    )
    
    chat = gr.ChatInterface(
        fn=run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1),
        textbox=gr.MultimodalTextbox(
            file_types=[".csv", ".txt", ".pdf"],  # ์ด๋ฏธ์ง€/๋น„๋””์˜ค ์ œ๊ฑฐ
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
        ],
        stop_btn=False,
        title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
        examples=examples,
        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )

    with gr.Row(elem_id="examples_row"):
        with gr.Column(scale=12, elem_id="examples_container"):
            gr.Markdown("### Example Inputs (click to load)")

if __name__ == "__main__":
    demo.launch()