Spaces:
Runtime error
Runtime error
File size: 2,938 Bytes
5fdd269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util
import torch
import torch.nn.functional as F
# Load SBERT model
sbert_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Load NLI model
nli_model_name = "tasksource/ModernBERT-base-nli"
nli_tokenizer = AutoTokenizer.from_pretrained(nli_model_name)
nli_model = AutoModelForSequenceClassification.from_pretrained(nli_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
nli_model.to(device)
# SBERT function
def compute_similarity(text1, text2):
embeddings = sbert_model.encode([text1, text2], convert_to_tensor=True)
similarity = float(util.pytorch_cos_sim(embeddings[0], embeddings[1])[0])
interpretation = ""
if similarity > 0.9:
interpretation = "π’ Very High Similarity"
elif similarity > 0.75:
interpretation = "π‘ Moderate Similarity"
elif similarity > 0.5:
interpretation = "π Low Similarity"
else:
interpretation = "π΄ Very Low Similarity"
return round(similarity, 4), interpretation
# NLI function
def check_entail(premise, hypothesis):
inputs = nli_tokenizer(premise, hypothesis, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
with torch.no_grad():
logits = nli_model(**inputs).logits
probs = torch.softmax(logits, dim=-1)[0]
label = ["entailment", "neutral", "contradiction"][torch.argmax(probs).item()]
return label, { "entailment": float(probs[0]), "neutral": float(probs[1]), "contradiction": float(probs[2]) }
def run_bi_direction(a, b):
res1 = check_entail(a, b)
res2 = check_entail(b, a)
return res1[0], res1[1], res2[0], res2[1]
# Build the interface
with gr.Blocks() as demo:
gr.Markdown("# βοΈ Essay Comparison Tool")
with gr.Tab("Semantic Similarity (SBERT)"):
a1 = gr.Textbox(label="Essay A", lines=8)
b1 = gr.Textbox(label="Essay B", lines=8)
sim_button = gr.Button("Compare Similarity")
sim_score = gr.Textbox(label="Cosine Similarity (0β1)")
sim_interpret = gr.Textbox(label="Interpretation")
sim_button.click(fn=compute_similarity, inputs=[a1, b1], outputs=[sim_score, sim_interpret])
with gr.Tab("Bidirectional Entailment (NLI)"):
a2 = gr.Textbox(label="Essay A (Original)", lines=8)
b2 = gr.Textbox(label="Essay B (Modified)", lines=8)
nli_button = gr.Button("Run Entailment Check")
ab_label = gr.Textbox(label="A β B Label")
ab_scores = gr.JSON(label="A β B Scores")
ba_label = gr.Textbox(label="B β A Label")
ba_scores = gr.JSON(label="B β A Scores")
nli_button.click(fn=run_bi_direction, inputs=[a2, b2], outputs=[ab_label, ab_scores, ba_label, ba_scores])
if __name__ == "__main__":
demo.launch()
|