Spaces:
Build error
Build error
Create pymaf/utils/imutils.py
Browse files- lib/pymaf/utils/imutils.py +491 -0
lib/pymaf/utils/imutils.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains functions that are used to perform data augmentation.
|
3 |
+
"""
|
4 |
+
import cv2
|
5 |
+
import io
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from rembg import remove
|
10 |
+
from rembg.session_factory import new_session
|
11 |
+
from torchvision.models import detection
|
12 |
+
|
13 |
+
from lib.pymaf.core import constants
|
14 |
+
from lib.pymaf.utils.streamer import aug_matrix
|
15 |
+
from lib.common.cloth_extraction import load_segmentation
|
16 |
+
from torchvision import transforms
|
17 |
+
|
18 |
+
|
19 |
+
def load_img(img_file):
|
20 |
+
|
21 |
+
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
|
22 |
+
if len(img.shape) == 2:
|
23 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
24 |
+
|
25 |
+
if not img_file.endswith("png"):
|
26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
27 |
+
else:
|
28 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
|
29 |
+
|
30 |
+
return img
|
31 |
+
|
32 |
+
|
33 |
+
def get_bbox(img, det):
|
34 |
+
|
35 |
+
input = np.float32(img)
|
36 |
+
input = (input / 255.0 -
|
37 |
+
(0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0]
|
38 |
+
input = input.transpose(2, 0, 1) # TO [3 x H x W]
|
39 |
+
bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0))
|
40 |
+
|
41 |
+
probs = probs.unsqueeze(3)
|
42 |
+
bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum(
|
43 |
+
dim=1, keepdim=True)
|
44 |
+
bbox = bboxes[0, 0, 0].cpu().numpy()
|
45 |
+
|
46 |
+
return bbox
|
47 |
+
# Michael Black is
|
48 |
+
|
49 |
+
|
50 |
+
def get_transformer(input_res):
|
51 |
+
|
52 |
+
image_to_tensor = transforms.Compose([
|
53 |
+
transforms.Resize(input_res),
|
54 |
+
transforms.ToTensor(),
|
55 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
56 |
+
])
|
57 |
+
|
58 |
+
mask_to_tensor = transforms.Compose([
|
59 |
+
transforms.Resize(input_res),
|
60 |
+
transforms.ToTensor(),
|
61 |
+
transforms.Normalize((0.0, ), (1.0, ))
|
62 |
+
])
|
63 |
+
|
64 |
+
image_to_pymaf_tensor = transforms.Compose([
|
65 |
+
transforms.Resize(size=224),
|
66 |
+
transforms.Normalize(mean=constants.IMG_NORM_MEAN,
|
67 |
+
std=constants.IMG_NORM_STD)
|
68 |
+
])
|
69 |
+
|
70 |
+
image_to_pixie_tensor = transforms.Compose([
|
71 |
+
transforms.Resize(224)
|
72 |
+
])
|
73 |
+
|
74 |
+
def image_to_hybrik_tensor(img):
|
75 |
+
# mean
|
76 |
+
img[0].add_(-0.406)
|
77 |
+
img[1].add_(-0.457)
|
78 |
+
img[2].add_(-0.480)
|
79 |
+
|
80 |
+
# std
|
81 |
+
img[0].div_(0.225)
|
82 |
+
img[1].div_(0.224)
|
83 |
+
img[2].div_(0.229)
|
84 |
+
return img
|
85 |
+
|
86 |
+
return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
|
87 |
+
|
88 |
+
|
89 |
+
def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None):
|
90 |
+
"""Read image, do preprocessing and possibly crop it according to the bounding box.
|
91 |
+
If there are bounding box annotations, use them to crop the image.
|
92 |
+
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
|
93 |
+
"""
|
94 |
+
|
95 |
+
[image_to_tensor, mask_to_tensor, image_to_pymaf_tensor,
|
96 |
+
image_to_pixie_tensor, image_to_hybrik_tensor] = get_transformer(input_res)
|
97 |
+
|
98 |
+
img_ori = load_img(img_file)
|
99 |
+
|
100 |
+
in_height, in_width, _ = img_ori.shape
|
101 |
+
M = aug_matrix(in_width, in_height, input_res*2, input_res*2)
|
102 |
+
|
103 |
+
# from rectangle to square
|
104 |
+
img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
|
105 |
+
(input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
|
106 |
+
|
107 |
+
# detection for bbox
|
108 |
+
detector = detection.maskrcnn_resnet50_fpn(pretrained=True)
|
109 |
+
detector.eval()
|
110 |
+
predictions = detector(
|
111 |
+
[torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0]
|
112 |
+
human_ids = torch.where(
|
113 |
+
predictions["scores"] == predictions["scores"][predictions['labels'] == 1].max())
|
114 |
+
bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy()
|
115 |
+
|
116 |
+
width = bbox[2] - bbox[0]
|
117 |
+
height = bbox[3] - bbox[1]
|
118 |
+
center = np.array([(bbox[0] + bbox[2]) / 2.0,
|
119 |
+
(bbox[1] + bbox[3]) / 2.0])
|
120 |
+
|
121 |
+
scale = max(height, width) / 180
|
122 |
+
|
123 |
+
if hps_type == 'hybrik':
|
124 |
+
img_np = crop_for_hybrik(img_for_crop, center,
|
125 |
+
np.array([scale * 180, scale * 180]))
|
126 |
+
else:
|
127 |
+
img_np, cropping_parameters = crop(
|
128 |
+
img_for_crop, center, scale, (input_res, input_res))
|
129 |
+
|
130 |
+
img_pil = Image.fromarray(remove(img_np, post_process_mask=True, session=new_session("u2net")))
|
131 |
+
|
132 |
+
# for icon
|
133 |
+
img_rgb = image_to_tensor(img_pil.convert("RGB"))
|
134 |
+
img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
|
135 |
+
torch.tensor(0.5)).float()
|
136 |
+
img_tensor = img_rgb * img_mask
|
137 |
+
|
138 |
+
# for hps
|
139 |
+
img_hps = img_np.astype(np.float32) / 255.
|
140 |
+
img_hps = torch.from_numpy(img_hps).permute(2, 0, 1)
|
141 |
+
|
142 |
+
if hps_type == 'bev':
|
143 |
+
img_hps = img_np[:, :, [2, 1, 0]]
|
144 |
+
elif hps_type == 'hybrik':
|
145 |
+
img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device)
|
146 |
+
elif hps_type != 'pixie':
|
147 |
+
img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device)
|
148 |
+
else:
|
149 |
+
img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device)
|
150 |
+
|
151 |
+
# uncrop params
|
152 |
+
uncrop_param = {'center': center,
|
153 |
+
'scale': scale,
|
154 |
+
'ori_shape': img_ori.shape,
|
155 |
+
'box_shape': img_np.shape,
|
156 |
+
'crop_shape': img_for_crop.shape,
|
157 |
+
'M': M}
|
158 |
+
|
159 |
+
if not (seg_path is None):
|
160 |
+
segmentations = load_segmentation(seg_path, (in_height, in_width))
|
161 |
+
seg_coord_normalized = []
|
162 |
+
for seg in segmentations:
|
163 |
+
coord_normalized = []
|
164 |
+
for xy in seg['coordinates']:
|
165 |
+
xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T
|
166 |
+
warped_indeces = M[0:2, :] @ xy_h[:, :, None]
|
167 |
+
warped_indeces = np.array(warped_indeces).astype(int)
|
168 |
+
warped_indeces.resize((warped_indeces.shape[:2]))
|
169 |
+
|
170 |
+
# cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape)
|
171 |
+
cropped_indeces = crop_segmentation(
|
172 |
+
warped_indeces, (input_res, input_res), cropping_parameters)
|
173 |
+
|
174 |
+
indices = np.vstack(
|
175 |
+
(cropped_indeces[:, 0], cropped_indeces[:, 1])).T
|
176 |
+
|
177 |
+
# Convert to NDC coordinates
|
178 |
+
seg_cropped_normalized = 2*(indices / input_res) - 1
|
179 |
+
# Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere)
|
180 |
+
# Divide only by 45 on the horizontal axis to take the curve of the human body into account
|
181 |
+
seg_cropped_normalized[:, 0] = (
|
182 |
+
1/40) * seg_cropped_normalized[:, 0]
|
183 |
+
seg_cropped_normalized[:, 1] = (
|
184 |
+
1/50) * seg_cropped_normalized[:, 1]
|
185 |
+
coord_normalized.append(seg_cropped_normalized)
|
186 |
+
|
187 |
+
seg['coord_normalized'] = coord_normalized
|
188 |
+
seg_coord_normalized.append(seg)
|
189 |
+
|
190 |
+
return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized
|
191 |
+
|
192 |
+
return img_tensor, img_hps, img_ori, img_mask, uncrop_param
|
193 |
+
|
194 |
+
|
195 |
+
def get_transform(center, scale, res):
|
196 |
+
"""Generate transformation matrix."""
|
197 |
+
h = 200 * scale
|
198 |
+
t = np.zeros((3, 3))
|
199 |
+
t[0, 0] = float(res[1]) / h
|
200 |
+
t[1, 1] = float(res[0]) / h
|
201 |
+
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
202 |
+
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
203 |
+
t[2, 2] = 1
|
204 |
+
|
205 |
+
return t
|
206 |
+
|
207 |
+
|
208 |
+
def transform(pt, center, scale, res, invert=0):
|
209 |
+
"""Transform pixel location to different reference."""
|
210 |
+
t = get_transform(center, scale, res)
|
211 |
+
if invert:
|
212 |
+
t = np.linalg.inv(t)
|
213 |
+
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
214 |
+
new_pt = np.dot(t, new_pt)
|
215 |
+
return np.around(new_pt[:2]).astype(np.int16)
|
216 |
+
|
217 |
+
|
218 |
+
def crop(img, center, scale, res):
|
219 |
+
"""Crop image according to the supplied bounding box."""
|
220 |
+
|
221 |
+
# Upper left point
|
222 |
+
ul = np.array(transform([0, 0], center, scale, res, invert=1))
|
223 |
+
|
224 |
+
# Bottom right point
|
225 |
+
br = np.array(transform(res, center, scale, res, invert=1))
|
226 |
+
|
227 |
+
new_shape = [br[1] - ul[1], br[0] - ul[0]]
|
228 |
+
if len(img.shape) > 2:
|
229 |
+
new_shape += [img.shape[2]]
|
230 |
+
new_img = np.zeros(new_shape)
|
231 |
+
|
232 |
+
# Range to fill new array
|
233 |
+
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
|
234 |
+
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
|
235 |
+
|
236 |
+
# Range to sample from original image
|
237 |
+
old_x = max(0, ul[0]), min(len(img[0]), br[0])
|
238 |
+
old_y = max(0, ul[1]), min(len(img), br[1])
|
239 |
+
|
240 |
+
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]
|
241 |
+
] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
|
242 |
+
if len(img.shape) == 2:
|
243 |
+
new_img = np.array(Image.fromarray(new_img).resize(res))
|
244 |
+
else:
|
245 |
+
new_img = np.array(Image.fromarray(
|
246 |
+
new_img.astype(np.uint8)).resize(res))
|
247 |
+
|
248 |
+
return new_img, (old_x, new_x, old_y, new_y, new_shape)
|
249 |
+
|
250 |
+
|
251 |
+
def crop_segmentation(org_coord, res, cropping_parameters):
|
252 |
+
old_x, new_x, old_y, new_y, new_shape = cropping_parameters
|
253 |
+
|
254 |
+
new_coord = np.zeros((org_coord.shape))
|
255 |
+
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0])
|
256 |
+
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0])
|
257 |
+
|
258 |
+
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1])
|
259 |
+
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0])
|
260 |
+
|
261 |
+
return new_coord
|
262 |
+
|
263 |
+
|
264 |
+
def crop_for_hybrik(img, center, scale):
|
265 |
+
inp_h, inp_w = (256, 256)
|
266 |
+
trans = get_affine_transform(center, scale, 0, [inp_w, inp_h])
|
267 |
+
new_img = cv2.warpAffine(
|
268 |
+
img, trans, (int(inp_w), int(inp_h)), flags=cv2.INTER_LINEAR)
|
269 |
+
return new_img
|
270 |
+
|
271 |
+
|
272 |
+
def get_affine_transform(center,
|
273 |
+
scale,
|
274 |
+
rot,
|
275 |
+
output_size,
|
276 |
+
shift=np.array([0, 0], dtype=np.float32),
|
277 |
+
inv=0):
|
278 |
+
|
279 |
+
def get_dir(src_point, rot_rad):
|
280 |
+
"""Rotate the point by `rot_rad` degree."""
|
281 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
282 |
+
|
283 |
+
src_result = [0, 0]
|
284 |
+
src_result[0] = src_point[0] * cs - src_point[1] * sn
|
285 |
+
src_result[1] = src_point[0] * sn + src_point[1] * cs
|
286 |
+
|
287 |
+
return src_result
|
288 |
+
|
289 |
+
def get_3rd_point(a, b):
|
290 |
+
"""Return vector c that perpendicular to (a - b)."""
|
291 |
+
direct = a - b
|
292 |
+
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
|
293 |
+
|
294 |
+
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
|
295 |
+
scale = np.array([scale, scale])
|
296 |
+
|
297 |
+
scale_tmp = scale
|
298 |
+
src_w = scale_tmp[0]
|
299 |
+
dst_w = output_size[0]
|
300 |
+
dst_h = output_size[1]
|
301 |
+
|
302 |
+
rot_rad = np.pi * rot / 180
|
303 |
+
src_dir = get_dir([0, src_w * -0.5], rot_rad)
|
304 |
+
dst_dir = np.array([0, dst_w * -0.5], np.float32)
|
305 |
+
|
306 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
307 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
308 |
+
src[0, :] = center + scale_tmp * shift
|
309 |
+
src[1, :] = center + src_dir + scale_tmp * shift
|
310 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
311 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
312 |
+
|
313 |
+
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
|
314 |
+
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
|
315 |
+
|
316 |
+
if inv:
|
317 |
+
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
318 |
+
else:
|
319 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
320 |
+
|
321 |
+
return trans
|
322 |
+
|
323 |
+
|
324 |
+
def corner_align(ul, br):
|
325 |
+
|
326 |
+
if ul[1]-ul[0] != br[1]-br[0]:
|
327 |
+
ul[1] = ul[0]+br[1]-br[0]
|
328 |
+
|
329 |
+
return ul, br
|
330 |
+
|
331 |
+
|
332 |
+
def uncrop(img, center, scale, orig_shape):
|
333 |
+
"""'Undo' the image cropping/resizing.
|
334 |
+
This function is used when evaluating mask/part segmentation.
|
335 |
+
"""
|
336 |
+
|
337 |
+
res = img.shape[:2]
|
338 |
+
|
339 |
+
# Upper left point
|
340 |
+
ul = np.array(transform([0, 0], center, scale, res, invert=1))
|
341 |
+
# Bottom right point
|
342 |
+
br = np.array(transform(res, center, scale, res, invert=1))
|
343 |
+
|
344 |
+
# quick fix
|
345 |
+
ul, br = corner_align(ul, br)
|
346 |
+
|
347 |
+
# size of cropped image
|
348 |
+
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
|
349 |
+
new_img = np.zeros(orig_shape, dtype=np.uint8)
|
350 |
+
|
351 |
+
# Range to fill new array
|
352 |
+
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
|
353 |
+
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
|
354 |
+
|
355 |
+
# Range to sample from original image
|
356 |
+
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
|
357 |
+
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
|
358 |
+
|
359 |
+
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
|
360 |
+
|
361 |
+
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]
|
362 |
+
] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
|
363 |
+
|
364 |
+
return new_img
|
365 |
+
|
366 |
+
|
367 |
+
def rot_aa(aa, rot):
|
368 |
+
"""Rotate axis angle parameters."""
|
369 |
+
# pose parameters
|
370 |
+
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
371 |
+
[np.sin(np.deg2rad(-rot)),
|
372 |
+
np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]])
|
373 |
+
# find the rotation of the body in camera frame
|
374 |
+
per_rdg, _ = cv2.Rodrigues(aa)
|
375 |
+
# apply the global rotation to the global orientation
|
376 |
+
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
|
377 |
+
aa = (resrot.T)[0]
|
378 |
+
return aa
|
379 |
+
|
380 |
+
|
381 |
+
def flip_img(img):
|
382 |
+
"""Flip rgb images or masks.
|
383 |
+
channels come last, e.g. (256,256,3).
|
384 |
+
"""
|
385 |
+
img = np.fliplr(img)
|
386 |
+
return img
|
387 |
+
|
388 |
+
|
389 |
+
def flip_kp(kp, is_smpl=False):
|
390 |
+
"""Flip keypoints."""
|
391 |
+
if len(kp) == 24:
|
392 |
+
if is_smpl:
|
393 |
+
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
|
394 |
+
else:
|
395 |
+
flipped_parts = constants.J24_FLIP_PERM
|
396 |
+
elif len(kp) == 49:
|
397 |
+
if is_smpl:
|
398 |
+
flipped_parts = constants.SMPL_J49_FLIP_PERM
|
399 |
+
else:
|
400 |
+
flipped_parts = constants.J49_FLIP_PERM
|
401 |
+
kp = kp[flipped_parts]
|
402 |
+
kp[:, 0] = -kp[:, 0]
|
403 |
+
return kp
|
404 |
+
|
405 |
+
|
406 |
+
def flip_pose(pose):
|
407 |
+
"""Flip pose.
|
408 |
+
The flipping is based on SMPL parameters.
|
409 |
+
"""
|
410 |
+
flipped_parts = constants.SMPL_POSE_FLIP_PERM
|
411 |
+
pose = pose[flipped_parts]
|
412 |
+
# we also negate the second and the third dimension of the axis-angle
|
413 |
+
pose[1::3] = -pose[1::3]
|
414 |
+
pose[2::3] = -pose[2::3]
|
415 |
+
return pose
|
416 |
+
|
417 |
+
|
418 |
+
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
|
419 |
+
# Normalize keypoints between -1, 1
|
420 |
+
if not inv:
|
421 |
+
ratio = 1.0 / crop_size
|
422 |
+
kp_2d = 2.0 * kp_2d * ratio - 1.0
|
423 |
+
else:
|
424 |
+
ratio = 1.0 / crop_size
|
425 |
+
kp_2d = (kp_2d + 1.0) / (2 * ratio)
|
426 |
+
|
427 |
+
return kp_2d
|
428 |
+
|
429 |
+
|
430 |
+
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
|
431 |
+
'''
|
432 |
+
param joints: [num_joints, 3]
|
433 |
+
param joints_vis: [num_joints, 3]
|
434 |
+
return: target, target_weight(1: visible, 0: invisible)
|
435 |
+
'''
|
436 |
+
num_joints = joints.shape[0]
|
437 |
+
device = joints.device
|
438 |
+
cur_device = torch.device(device.type, device.index)
|
439 |
+
if not hasattr(heatmap_size, '__len__'):
|
440 |
+
# width height
|
441 |
+
heatmap_size = [heatmap_size, heatmap_size]
|
442 |
+
assert len(heatmap_size) == 2
|
443 |
+
target_weight = np.ones((num_joints, 1), dtype=np.float32)
|
444 |
+
if joints_vis is not None:
|
445 |
+
target_weight[:, 0] = joints_vis[:, 0]
|
446 |
+
target = torch.zeros((num_joints, heatmap_size[1], heatmap_size[0]),
|
447 |
+
dtype=torch.float32,
|
448 |
+
device=cur_device)
|
449 |
+
|
450 |
+
tmp_size = sigma * 3
|
451 |
+
|
452 |
+
for joint_id in range(num_joints):
|
453 |
+
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
|
454 |
+
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
|
455 |
+
# Check that any part of the gaussian is in-bounds
|
456 |
+
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
|
457 |
+
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
|
458 |
+
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
|
459 |
+
or br[0] < 0 or br[1] < 0:
|
460 |
+
# If not, just return the image as is
|
461 |
+
target_weight[joint_id] = 0
|
462 |
+
continue
|
463 |
+
|
464 |
+
# # Generate gaussian
|
465 |
+
size = 2 * tmp_size + 1
|
466 |
+
# x = np.arange(0, size, 1, np.float32)
|
467 |
+
# y = x[:, np.newaxis]
|
468 |
+
# x0 = y0 = size // 2
|
469 |
+
# # The gaussian is not normalized, we want the center value to equal 1
|
470 |
+
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
|
471 |
+
# g = torch.from_numpy(g.astype(np.float32))
|
472 |
+
|
473 |
+
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
|
474 |
+
y = x.unsqueeze(-1)
|
475 |
+
x0 = y0 = size // 2
|
476 |
+
# The gaussian is not normalized, we want the center value to equal 1
|
477 |
+
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
|
478 |
+
|
479 |
+
# Usable gaussian range
|
480 |
+
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
|
481 |
+
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
|
482 |
+
# Image range
|
483 |
+
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
|
484 |
+
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
|
485 |
+
|
486 |
+
v = target_weight[joint_id]
|
487 |
+
if v > 0.5:
|
488 |
+
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
|
489 |
+
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
|
490 |
+
|
491 |
+
return target, target_weight
|