Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,157 +1,417 @@
|
|
1 |
-
# ------------- app.py -------------
|
2 |
import streamlit as st
|
3 |
-
|
|
|
4 |
from io import BytesIO
|
5 |
-
import pdfplumber
|
|
|
6 |
from PIL import Image
|
7 |
-
from langchain.text_splitter import
|
8 |
from langchain_community.vectorstores import FAISS
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
from transformers import pipeline
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
logging
|
|
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
@st.cache_resource(
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
def
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
st.session_state.messages = []
|
118 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if st.session_state.images:
|
121 |
-
st.
|
122 |
-
for
|
123 |
-
st.image(
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
else:
|
134 |
-
# history
|
135 |
-
for role, msg in st.session_state.messages:
|
136 |
-
css = "user" if role == "user" else "assistant"
|
137 |
-
st.markdown(f'<div class="chat-msg {css}">{msg}</div>', unsafe_allow_html=True)
|
138 |
-
|
139 |
-
# input
|
140 |
-
if question := st.chat_input("Ask anything about the PDF…"):
|
141 |
-
st.session_state.messages.append(("user", question))
|
142 |
-
st.markdown(f'<div class="chat-msg user">{question}</div>', unsafe_allow_html=True)
|
143 |
-
|
144 |
-
with st.spinner("Thinking…"):
|
145 |
-
resp = answer(question, st.session_state.index)
|
146 |
-
st.session_state.messages.append(("assistant", resp))
|
147 |
-
st.markdown(f'<div class="chat-msg assistant">{resp}</div>', unsafe_allow_html=True)
|
148 |
-
|
149 |
-
with tab_sum:
|
150 |
-
if not st.session_state.raw_text:
|
151 |
-
st.info("Upload & process a PDF first.")
|
152 |
-
else:
|
153 |
-
if st.button("Generate Summary"):
|
154 |
-
with st.spinner("Summarizing…"):
|
155 |
-
summary = summarize(st.session_state.raw_text)
|
156 |
-
st.subheader("Summary")
|
157 |
-
st.write(summary)
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
from io import BytesIO
|
5 |
+
import pdfplumber
|
6 |
+
from pdf2image import convert_from_bytes
|
7 |
from PIL import Image
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
12 |
+
from datasets import load_dataset
|
13 |
+
from rank_bm25 import BM25Okapi
|
14 |
+
from rouge_score import rouge_scorer
|
15 |
+
import re
|
16 |
+
import time
|
17 |
+
import pytesseract
|
18 |
|
19 |
+
# Setup logging for Spaces
|
20 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
+
# Lazy load models
|
24 |
+
@st.cache_resource(ttl=1800)
|
25 |
+
def load_embeddings_model():
|
26 |
+
logger.info("Loading embeddings model")
|
27 |
+
try:
|
28 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
29 |
+
except Exception as e:
|
30 |
+
logger.error(f"Embeddings load error: {str(e)}")
|
31 |
+
st.error(f"Embedding model error: {str(e)}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
@st.cache_resource(ttl=1800)
|
35 |
+
def load_qa_pipeline():
|
36 |
+
logger.info("Loading QA pipeline")
|
37 |
+
try:
|
38 |
+
dataset = load_and_prepare_dataset()
|
39 |
+
if dataset:
|
40 |
+
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
41 |
+
if fine_tuned_pipeline:
|
42 |
+
return fine_tuned_pipeline
|
43 |
+
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
|
44 |
+
except Exception as e:
|
45 |
+
logger.error(f"QA model load error: {str(e)}")
|
46 |
+
st.error(f"QA model error: {str(e)}")
|
47 |
+
return None
|
48 |
+
|
49 |
+
@st.cache_resource(ttl=1800)
|
50 |
+
def load_summary_pipeline():
|
51 |
+
logger.info("Loading summary pipeline")
|
52 |
+
try:
|
53 |
+
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250)
|
54 |
+
except Exception as e:
|
55 |
+
logger.error(f"Summary model load error: {str(e)}")
|
56 |
+
st.error(f"Summary model error: {str(e)}")
|
57 |
+
return None
|
58 |
+
|
59 |
+
# Load and prepare dataset (e.g., SQuAD)
|
60 |
+
@st.cache_data(ttl=3600)
|
61 |
+
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
|
62 |
+
logger.info(f"Loading dataset: {dataset_name}")
|
63 |
+
try:
|
64 |
+
dataset = load_dataset(dataset_name, split="train[:80%]")
|
65 |
+
dataset = dataset.shuffle(seed=42).select(range(min(max_samples, len(dataset))))
|
66 |
+
|
67 |
+
def preprocess(examples):
|
68 |
+
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])]
|
69 |
+
targets = examples['answers']['text']
|
70 |
+
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]}
|
71 |
+
|
72 |
+
dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
|
73 |
+
return dataset
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Dataset load error: {str(e)}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
# Fine-tune QA model
|
79 |
+
@st.cache_resource(ttl=3600)
|
80 |
+
def fine_tune_qa_model(dataset):
|
81 |
+
logger.info("Starting fine-tuning")
|
82 |
+
try:
|
83 |
+
model_name = "google/flan-t5-small"
|
84 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
85 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
86 |
+
|
87 |
+
def tokenize_function(examples):
|
88 |
+
model_inputs = tokenizer(examples['input_text'], max_length=512, truncation=True, padding="max_length")
|
89 |
+
labels = tokenizer(examples['target_text'], max_length=128, truncation=True, padding="max_length")
|
90 |
+
model_inputs["labels"] = labels["input_ids"]
|
91 |
+
return model_inputs
|
92 |
+
|
93 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=['input_text', 'target_text'])
|
94 |
+
|
95 |
+
training_args = TrainingArguments(
|
96 |
+
output_dir="./fine_tuned_model",
|
97 |
+
num_train_epochs=2,
|
98 |
+
per_device_train_batch_size=4,
|
99 |
+
save_steps=500,
|
100 |
+
logging_steps=100,
|
101 |
+
evaluation_strategy="no",
|
102 |
+
learning_rate=3e-5,
|
103 |
+
fp16=False,
|
104 |
+
)
|
105 |
+
|
106 |
+
trainer = Trainer(
|
107 |
+
model=model,
|
108 |
+
args=training_args,
|
109 |
+
train_dataset=tokenized_dataset,
|
110 |
+
)
|
111 |
+
trainer.train()
|
112 |
+
|
113 |
+
model.save_pretrained("./fine_tuned_model")
|
114 |
+
tokenizer.save_pretrained("./fine_tuned_model")
|
115 |
+
logger.info("Fine-tuning complete")
|
116 |
+
return pipeline("text2text-generation", model="./fine_tuned_model", tokenizer="./fine_tuned_model", max_length=300)
|
117 |
+
except Exception as e:
|
118 |
+
logger.error(f"Fine-tuning error: {str(e)}")
|
119 |
+
return None
|
120 |
+
|
121 |
+
# Augment vector store with dataset
|
122 |
+
def augment_vector_store(vector_store, dataset_name="squad", max_samples=300):
|
123 |
+
logger.info(f"Augmenting vector store with dataset: {dataset_name}")
|
124 |
+
try:
|
125 |
+
dataset = load_dataset(dataset_name, split="train").select(range(min(max_samples, len(dataset))))
|
126 |
+
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])]
|
127 |
+
embeddings_model = load_embeddings_model()
|
128 |
+
if embeddings_model and vector_store:
|
129 |
+
embeddings = embeddings_model.encode(chunks, batch_size=128, show_progress_bar=False)
|
130 |
+
vector_store.add_embeddings(zip(chunks, embeddings))
|
131 |
+
return vector_store
|
132 |
+
except Exception as e:
|
133 |
+
logger.error(f"Vector store augmentation error: {str(e)}")
|
134 |
+
return vector_store
|
135 |
+
|
136 |
+
# Process PDF with enhanced extraction and OCR fallback
|
137 |
+
def process_pdf(uploaded_file):
|
138 |
+
logger.info("Processing PDF with enhanced extraction")
|
139 |
+
try:
|
140 |
+
text = ""
|
141 |
+
code_blocks = []
|
142 |
+
images = []
|
143 |
+
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
|
144 |
+
for page in pdf.pages[:8]:
|
145 |
+
extracted = page.extract_text(layout=False)
|
146 |
+
if not extracted:
|
147 |
+
try:
|
148 |
+
img = page.to_image(resolution=150).original
|
149 |
+
extracted = pytesseract.image_to_string(img, config='--psm 6')
|
150 |
+
images.append(img)
|
151 |
+
except Exception as ocr_e:
|
152 |
+
logger.warning(f"OCR failed: {str(ocr_e)}")
|
153 |
+
if extracted:
|
154 |
+
lines = extracted.split("\n")
|
155 |
+
cleaned_lines = [line for line in lines if not re.match(r'^\s*(Page \d+|.*\d{4}-\d{4}|Copyright.*)\s*$', line, re.I)]
|
156 |
+
text += "\n".join(cleaned_lines) + "\n"
|
157 |
+
for char in page.chars:
|
158 |
+
if 'fontname' in char and 'mono' in char['fontname'].lower():
|
159 |
+
code_blocks.append(char['text'])
|
160 |
+
code_text = page.extract_text()
|
161 |
+
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE)
|
162 |
+
for match in code_matches:
|
163 |
+
code_blocks.append(match.group().strip())
|
164 |
+
tables = page.extract_tables()
|
165 |
+
if tables:
|
166 |
+
for table in tables:
|
167 |
+
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
|
168 |
+
for obj in page.extract_words():
|
169 |
+
if obj.get('size', 0) > 12:
|
170 |
+
text += f"\n{obj['text']}\n"
|
171 |
+
|
172 |
+
code_text = "\n".join(code_blocks).strip()
|
173 |
+
if not text:
|
174 |
+
raise ValueError("No text extracted from PDF")
|
175 |
+
|
176 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40, keep_separator=True)
|
177 |
+
text_chunks = text_splitter.split_text(text)[:25]
|
178 |
+
code_chunks = text_splitter.split_text(code_text)[:10] if code_text else []
|
179 |
+
|
180 |
+
embeddings_model = load_embeddings_model()
|
181 |
+
if not embeddings_model:
|
182 |
+
return None, None, text, code_text, images
|
183 |
+
|
184 |
+
text_vector_store = FAISS.from_embeddings(
|
185 |
+
zip(text_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in text_chunks]),
|
186 |
+
embeddings_model.encode
|
187 |
+
) if text_chunks else None
|
188 |
+
code_vector_store = FAISS.from_embeddings(
|
189 |
+
zip(code_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in code_chunks]),
|
190 |
+
embeddings_model.encode
|
191 |
+
) if code_chunks else None
|
192 |
+
|
193 |
+
if text_vector_store:
|
194 |
+
text_vector_store = augment_vector_store(text_vector_store)
|
195 |
+
|
196 |
+
logger.info("PDF processed successfully")
|
197 |
+
return text_vector_store, code_vector_store, text, code_text, images
|
198 |
+
except Exception as e:
|
199 |
+
logger.error(f"PDF processing error: {str(e)}")
|
200 |
+
st.error(f"PDF error: {str(e)}")
|
201 |
+
return None, None, "", "", []
|
202 |
+
|
203 |
+
# Summarize PDF with ROUGE metrics and improved topic focus
|
204 |
+
def summarize_pdf(text):
|
205 |
+
logger.info("Generating summary")
|
206 |
+
try:
|
207 |
+
summary_pipeline = load_summary_pipeline()
|
208 |
+
if not summary_pipeline:
|
209 |
+
return "Summary model unavailable."
|
210 |
+
|
211 |
+
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40)
|
212 |
+
chunks = text_splitter.split_text(text)
|
213 |
+
|
214 |
+
# Hybrid search for relevant chunks
|
215 |
+
embeddings_model = load_embeddings_model()
|
216 |
+
if embeddings_model and chunks:
|
217 |
+
temp_vector_store = FAISS.from_embeddings(
|
218 |
+
zip(chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in chunks]),
|
219 |
+
embeddings_model.encode
|
220 |
+
)
|
221 |
+
bm25 = BM25Okapi([chunk.split() for chunk in chunks])
|
222 |
+
query = "main topic and key points"
|
223 |
+
bm25_docs = bm25.get_top_n(query.split(), chunks, n=4)
|
224 |
+
faiss_docs = temp_vector_store.similarity_search(query, k=4)
|
225 |
+
selected_chunks = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:4]
|
226 |
+
else:
|
227 |
+
selected_chunks = chunks[:4]
|
228 |
+
|
229 |
+
summaries = []
|
230 |
+
for chunk in selected_chunks:
|
231 |
+
summary = summary_pipeline(f"Summarize the main topic and key points in detail: {chunk[:250]}", max_length=100, min_length=50, do_sample=False)[0]['summary_text']
|
232 |
+
summaries.append(summary.strip())
|
233 |
+
|
234 |
+
combined_summary = " ".join(summaries)
|
235 |
+
if len(combined_summary.split()) > 250:
|
236 |
+
combined_summary = " ".join(combined_summary.split()[:250])
|
237 |
+
|
238 |
+
word_count = len(combined_summary.split())
|
239 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
|
240 |
+
scores = scorer.score(text[:500], combined_summary)
|
241 |
+
logger.info(f"ROUGE scores: {scores}")
|
242 |
+
|
243 |
+
return f"**Main Topic Summary** ({word_count} words):\n{combined_summary}\n\n**ROUGE-1**: {scores['rouge1'].fmeasure:.2f}"
|
244 |
+
except Exception as e:
|
245 |
+
logger.error(f"Summary error: {str(e)}")
|
246 |
+
return f"Oops, something went wrong summarizing: {str(e)}"
|
247 |
+
|
248 |
+
# Answer question with hybrid search
|
249 |
+
def answer_question(text_vector_store, code_vector_store, query):
|
250 |
+
logger.info(f"Processing query: {query}")
|
251 |
+
try:
|
252 |
+
if not text_vector_store and not code_vector_store:
|
253 |
+
return "Please upload a PDF first!"
|
254 |
+
|
255 |
+
qa_pipeline = load_qa_pipeline()
|
256 |
+
if not qa_pipeline:
|
257 |
+
return "Sorry, the QA model is unavailable right now."
|
258 |
+
|
259 |
+
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
|
260 |
+
if is_code_query and code_vector_store:
|
261 |
+
docs = code_vector_store.similarity_search(query, k=3)
|
262 |
+
code = "\n".join(doc.page_content for doc in docs)
|
263 |
+
explanation = qa_pipeline(f"Explain this code: {code[:500]}")[0]['generated_text']
|
264 |
+
return f"**Code**:\n```python\n{code}\n```\n**Explanation**:\n{explanation}"
|
265 |
+
|
266 |
+
vector_store = text_vector_store
|
267 |
+
if not vector_store:
|
268 |
+
return "No relevant content found for your query."
|
269 |
+
|
270 |
+
# Hybrid search: FAISS + BM25
|
271 |
+
text_chunks = [doc.page_content for doc in vector_store.similarity_search(query, k=10)]
|
272 |
+
bm25 = BM25Okapi([chunk.split() for chunk in text_chunks])
|
273 |
+
bm25_docs = bm25.get_top_n(query.split(), text_chunks, n=5)
|
274 |
+
faiss_docs = vector_store.similarity_search(query, k=5)
|
275 |
+
combined_docs = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:5]
|
276 |
+
context = "\n".join(combined_docs)
|
277 |
+
|
278 |
+
prompt = f"Use the following PDF content to answer the question accurately and concisely. Avoid speculation and focus on the provided context:\n\n{context}\n\nQuestion: {query}\nAnswer:"
|
279 |
+
response = qa_pipeline(prompt)[0]['generated_text']
|
280 |
+
logger.info("Answer generated")
|
281 |
+
return f"**Answer**:\n{response.strip()}\n\n**Source Context**:\n{context[:500]}..."
|
282 |
+
except Exception as e:
|
283 |
+
logger.error(f"Query error: {str(e)}")
|
284 |
+
return f"Sorry, something went wrong: {str(e)}"
|
285 |
+
|
286 |
+
# Streamlit UI
|
287 |
+
try:
|
288 |
+
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
|
289 |
+
st.markdown("""
|
290 |
+
<style>
|
291 |
+
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
|
292 |
+
.sidebar { background-color: #f8f9fa; padding: 10px; border-radius: 5px; }
|
293 |
+
.message { margin: 10px 0; padding: 10px; border-radius: 5px; display: block; }
|
294 |
+
.user { background-color: #e6f3ff; }
|
295 |
+
.assistant { background-color: #f0f0f0; }
|
296 |
+
.dark .user { background-color: #2a2a72; color: #fff; }
|
297 |
+
.dark .assistant { background-color: #2e2e2e; color: #fff; }
|
298 |
+
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 8px 16px; border-radius: 5px; }
|
299 |
+
.stButton>button:hover { background-color: #45a049; }
|
300 |
+
pre { background-color: #f8f8f8; padding: 10px; border-radius: 5px; overflow-x: auto; }
|
301 |
+
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 10px; border-radius: 5px; text-align: center; }
|
302 |
+
.progress-bar { background-color: #e0e0e0; border-radius: 5px; height: 10px; }
|
303 |
+
.progress-fill { background-color: #4CAF50; height: 100%; border-radius: 5px; transition: width 0.5s ease; }
|
304 |
+
</style>
|
305 |
+
""", unsafe_allow_html=True)
|
306 |
+
|
307 |
+
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
|
308 |
+
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!")
|
309 |
+
|
310 |
+
# Initialize session state
|
311 |
+
if "messages" not in st.session_state:
|
312 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hello! Upload a PDF and process it to start chatting."}]
|
313 |
+
if "text_vector_store" not in st.session_state:
|
314 |
+
st.session_state.text_vector_store = None
|
315 |
+
if "code_vector_store" not in st.session_state:
|
316 |
+
st.session_state.code_vector_store = None
|
317 |
+
if "pdf_text" not in st.session_state:
|
318 |
+
st.session_state.pdf_text = ""
|
319 |
+
if "code_text" not in st.session_state:
|
320 |
+
st.session_state.code_text = ""
|
321 |
+
if "images" not in st.session_state:
|
322 |
+
st.session_state.images = []
|
323 |
+
|
324 |
+
# Sidebar with toggle
|
325 |
+
with st.sidebar:
|
326 |
+
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
|
327 |
+
theme = st.radio("Theme", ["Light", "Dark"], index=0)
|
328 |
+
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0)
|
329 |
+
if st.button("Fine-Tune Model"):
|
330 |
+
progress_bar = st.progress(0)
|
331 |
+
for i in range(100):
|
332 |
+
time.sleep(0.008)
|
333 |
+
progress_bar.progress(i + 1)
|
334 |
+
dataset = load_and_prepare_dataset(dataset_name=dataset_name)
|
335 |
+
if dataset:
|
336 |
+
fine_tuned_pipeline = fine_tune_qa_model(dataset)
|
337 |
+
if fine_tuned_pipeline:
|
338 |
+
st.success("Model fine-tuned successfully!")
|
339 |
+
else:
|
340 |
+
st.error("Fine-tuning failed.")
|
341 |
+
if st.button("Clear Chat"):
|
342 |
st.session_state.messages = []
|
343 |
+
st.experimental_rerun()
|
344 |
+
if st.button("Retry Summarization") and st.session_state.pdf_text:
|
345 |
+
progress_bar = st.progress(0)
|
346 |
+
with st.spinner("Retrying summarization..."):
|
347 |
+
for i in range(100):
|
348 |
+
time.sleep(0.008)
|
349 |
+
progress_bar.progress(i + 1)
|
350 |
+
summary = summarize_pdf(st.session_state.pdf_text)
|
351 |
+
st.session_state.messages.append({"role": "assistant", "content": summary})
|
352 |
+
st.markdown(summary, unsafe_allow_html=True)
|
353 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
354 |
+
|
355 |
+
# PDF upload and processing
|
356 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
357 |
+
col1, col2 = st.columns([1, 1])
|
358 |
+
with col1:
|
359 |
+
if st.button("Process PDF"):
|
360 |
+
progress_bar = st.progress(0)
|
361 |
+
with st.spinner("Processing PDF..."):
|
362 |
+
for i in range(100):
|
363 |
+
time.sleep(0.02)
|
364 |
+
progress_bar.progress(i + 1)
|
365 |
+
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text, st.session_state.images = process_pdf(uploaded_file)
|
366 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
367 |
+
st.success("PDF processed! Ask away or summarize.")
|
368 |
+
st.session_state.messages = [{"role": "assistant", "content": "PDF processed! What would you like to know?"}]
|
369 |
+
else:
|
370 |
+
st.error("Failed to process PDF.")
|
371 |
+
with col2:
|
372 |
+
if st.button("Summarize PDF") and st.session_state.pdf_text:
|
373 |
+
progress_bar = st.progress(0)
|
374 |
+
with st.spinner("Summarizing..."):
|
375 |
+
for i in range(100):
|
376 |
+
time.sleep(0.008)
|
377 |
+
progress_bar.progress(i + 1)
|
378 |
+
summary = summarize_pdf(st.session_state.pdf_text)
|
379 |
+
st.session_state.messages.append({"role": "assistant", "content": summary})
|
380 |
+
st.markdown(summary, unsafe_allow_html=True)
|
381 |
|
382 |
+
# Chat interface
|
383 |
+
if st.session_state.text_vector_store or st.session_state.code_vector_store:
|
384 |
+
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):")
|
385 |
+
if prompt:
|
386 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
387 |
+
with st.chat_message("user"):
|
388 |
+
st.markdown(prompt)
|
389 |
+
with st.chat_message("assistant"):
|
390 |
+
progress_bar = st.progress(0)
|
391 |
+
with st.spinner('<div class="spinner">⏳ Processing...</div>'):
|
392 |
+
for i in range(100):
|
393 |
+
time.sleep(0.004)
|
394 |
+
progress_bar.progress(i + 1)
|
395 |
+
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
|
396 |
+
st.markdown(answer, unsafe_allow_html=True)
|
397 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
398 |
+
|
399 |
+
# Display chat history
|
400 |
+
for message in st.session_state.messages:
|
401 |
+
with st.chat_message(message["role"]):
|
402 |
+
st.markdown(message["content"], unsafe_allow_html=True)
|
403 |
+
|
404 |
+
# Display extracted images
|
405 |
if st.session_state.images:
|
406 |
+
st.header("Extracted Images")
|
407 |
+
for img in st.session_state.images:
|
408 |
+
st.image(img, caption="Extracted PDF Image", use_column_width=True)
|
409 |
+
|
410 |
+
# Download chat history
|
411 |
+
if st.session_state.messages:
|
412 |
+
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
|
413 |
+
st.download_button("Download Chat History", chat_text, "chat_history.txt")
|
414 |
+
|
415 |
+
except Exception as e:
|
416 |
+
logger.error(f"App initialization failed: {str(e)}")
|
417 |
+
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|