Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License | |
| """ Tokenization classes for IndoNLG model.""" | |
| from typing import List, Optional, Tuple, Union | |
| from transformers import PreTrainedTokenizer | |
| from transformers.utils import logging | |
| import sentencepiece as spm | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "indobenchmark/indobart": "https://huggingface.co/indobenchmark/indobart/resolve/main/sentencepiece.bpe.model", | |
| "indobenchmark/indogpt": "https://huggingface.co/indobenchmark/indogpt/resolve/main/sentencepiece.bpe.model", | |
| "indobenchmark/indobart-v2": "https://huggingface.co/indobenchmark/indobart-v2/resolve/main/sentencepiece.bpe.model" | |
| } | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "indobenchmark/indobart": 768, | |
| "indobenchmark/indogpt": 768, | |
| "indobenchmark/indobart-v2": 768 | |
| } | |
| SHARED_MODEL_IDENTIFIERS = [ | |
| # Load with | |
| "indobenchmark/indobart", | |
| "indobenchmark/indogpt", | |
| "indobenchmark/indobart-v2" | |
| ] | |
| SPIECE_UNDERLINE = "▁" | |
| # Define type aliases and NamedTuples | |
| TextInput = str | |
| PreTokenizedInput = List[str] | |
| EncodedInput = List[int] | |
| TextInputPair = Tuple[str, str] | |
| PreTokenizedInputPair = Tuple[List[str], List[str]] | |
| EncodedInputPair = Tuple[List[int], List[int]] | |
| class IndoNLGTokenizer(PreTrainedTokenizer): | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| model_input_names=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] | |
| input_error_message = "text input must of type `str` (single example), `List[str]` (batch of examples)." | |
| def __init__( | |
| self, | |
| vocab_file, | |
| decode_special_token=True, | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| sep_token="</s>", | |
| cls_token="<s>", | |
| unk_token="<unk>", | |
| pad_token="<pad>", | |
| mask_token="<mask>", | |
| additional_special_tokens=[], | |
| **kwargs | |
| ): | |
| self.sp_model = spm.SentencePieceProcessor() | |
| self.sp_model.Load(str(vocab_file)) | |
| self.vocab_file = vocab_file | |
| self.decode_special_token = decode_special_token | |
| self.model_max_length = 1024 | |
| # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual | |
| # sentencepiece vocabulary (this is the case for <s> and </s> | |
| self.special_tokens_to_ids = { | |
| "[javanese]": 40000, | |
| "[sundanese]": 40001, | |
| "[indonesian]": 40002, | |
| "<mask>": 40003 | |
| } | |
| self.special_ids_to_tokens = {v: k for k, v in self.special_tokens_to_ids.items()} | |
| # Giving a warning when exists additional_special_tokens outside of dedicated special tokens. | |
| for token in additional_special_tokens: | |
| if token not in self.special_tokens_to_ids: | |
| print(f"Warning: Additional special tokens will be ignored in IndoNLGTokenizer.") | |
| break | |
| # Store Language token ID | |
| self.javanese_token = '[javanese]' | |
| self.javanese_token_id = 40000 | |
| self.sundanese_token = '[sundanese]' | |
| self.sundanese_token_id = 40001 | |
| self.indonesian_token = '[indonesian]' | |
| self.indonesian_token_id = 40002 | |
| super().__init__( | |
| vocab_file=vocab_file, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| unk_token=unk_token, | |
| sep_token=sep_token, | |
| cls_token=cls_token, | |
| pad_token=pad_token, | |
| mask_token=mask_token, | |
| additional_special_tokens=additional_special_tokens, | |
| **kwargs, | |
| ) | |
| self.special_token_ids = [ | |
| self.bos_token_id, self.eos_token_id, self.sep_token_id, self.cls_token_id, | |
| self.unk_token_id, self.pad_token_id, self.mask_token_id, | |
| self.javanese_token_id, self.sundanese_token_id, self.indonesian_token_id | |
| ] | |
| def prepare_input_for_generation(self, inputs, model_type='indobart', lang_token='[indonesian]', decoder_inputs=None, | |
| decoder_lang_token='[indonesian]', padding='longest', return_tensors=None): | |
| """ | |
| Build model inputs for a specified `model_type`. There are two possible `model_type`, i.e., indobart and indogpt. | |
| When `model_type` is indogpt, `lang_token`, `decoder_inputs`, and `decoder_lang_token` parameters will be ignored | |
| and the input will be encoded in the gpt2 sequence format as follow: | |
| - indogpt sequence: ``<s> X`` | |
| When `model_type` is indobart, `inputs` and `lang_token` are used as the sequence and language identifier for the indobart encoder, | |
| while `decoder_inputs` and `decoder_lang_token` are used as the sequence and language identifier of the decoder | |
| - indobart encoder sequence: ``X </s> <lang_token_id>`` | |
| - indobart decoder sequences: ``<decoder_lang_token_id> X </s>`` | |
| Args: | |
| inputs (:obj:`str` or `List[str]`): | |
| text sequence or list of text sequences to be tokenized. | |
| model_type (:obj:`str`, defaults to :obj:`indobart`): | |
| model type to determine the format of the tokenized sequence. Valid values are `indobart` and `indogpt`. | |
| lang_token (:obj:`str`, defaults to :obj:`[indonesian]`): | |
| language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`. | |
| decoder_inputs (:obj:`str` or `List[str]`, `optional`): | |
| decoder text sequence or list of text sequences to be tokenized. | |
| decoder_lang_token (:obj:`str`, defaults to :obj:`[indonesian]`): | |
| decoder language token to determine the format of the tokenized sequence. Valid values are `[indonesian]`, `[sundanese], and [javanese]`. | |
| padding (:obj:`str`, defaults to :obj:`longest`): | |
| padding strategy to pad the tokenized sequences. Valid values are `longest`, `max_length`, and `do_not_pad`. | |
| return_tensors (:obj:`str`, defaults to :obj:`None`): | |
| Returned tensor type of the tokenized sequence. When set to `None`, the return type will be List[int]. Valid values are `None`, `pt`, and `tf` | |
| Returns: | |
| :obj:`Dict`: Dictionary with `input_ids`, `attention_mask`, `decoder_input_ids` (optional), and `decoder_attention_mask` (optional) | |
| """ | |
| if model_type == 'indogpt': | |
| # Process indogpt input | |
| if type(inputs) == str: | |
| return self(f'<s> {inputs}', padding=padding, return_tensors=return_tensors) | |
| elif type(inputs) == list: | |
| if len(inputs) == 0 or type(inputs[0]) != str: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| else: | |
| return self([f'<s> {input_data}' for input_data in inputs], padding=padding, return_tensors=return_tensors) | |
| else: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| elif model_type == 'indobart': | |
| # Process encoder input | |
| if lang_token not in self.special_tokens_to_ids: | |
| raise ValueError(f"Unknown lang_token `{lang_token}`, lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`") | |
| elif type(inputs) == list: | |
| if len(inputs) == 0 or type(inputs[0]) != str: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| elif type(inputs) != str: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| lang_id = self.special_tokens_to_ids[lang_token] | |
| input_batch = self(inputs, return_attention_mask=False) | |
| if type(inputs) == str: | |
| input_batch['input_ids'] = [self.bos_token_id] + input_batch['input_ids'] + [self.eos_token_id, lang_id] | |
| else: | |
| input_batch['input_ids'] = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, lang_id], input_batch['input_ids'])) | |
| if decoder_inputs is None: | |
| # Return encoder input | |
| return self.pad(input_batch, return_tensors=return_tensors) | |
| else: | |
| # Process decoder input | |
| if decoder_lang_token not in self.special_tokens_to_ids: | |
| raise ValueError(f"Unknown decoder_lang_token `{decoder_lang_token}`, decoder_lang_token must be either `[javanese]`, `[sundanese]`, or `[indonesian]`") | |
| elif type(decoder_inputs) == list: | |
| if len(decoder_inputs) == 0: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| elif type(decoder_inputs[0]) != str: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| elif type(decoder_inputs) != str: | |
| raise ValueError(IndoNLGTokenizer.input_error_message) | |
| decoder_lang_id = self.special_tokens_to_ids[decoder_lang_token] | |
| decoder_input_batch = self(decoder_inputs, return_attention_mask=False) | |
| if type(decoder_inputs) == str: | |
| labels = [self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id, decoder_lang_id] | |
| decoder_input_batch['input_ids'] = [decoder_lang_id, self.bos_token_id] + decoder_input_batch['input_ids'] + [self.eos_token_id] | |
| else: | |
| labels = list(map(lambda input_ids: [self.bos_token_id] + input_ids + [self.eos_token_id, decoder_lang_id], decoder_input_batch['input_ids'])) | |
| decoder_input_batch['input_ids'] = list(map(lambda input_ids: [decoder_lang_id, self.bos_token_id] + input_ids + [self.eos_token_id], decoder_input_batch['input_ids'])) | |
| # Padding | |
| input_batch = self.pad(input_batch, return_tensors=return_tensors) | |
| decoder_input_batch = self.pad(decoder_input_batch, return_tensors=return_tensors) | |
| labels = self.pad({'input_ids': labels}, return_tensors=return_tensors)['input_ids'] | |
| if not isinstance(labels, (list, tuple)): | |
| labels[labels == self.pad_token_id] = -100 | |
| else: | |
| labels = list(map(lambda x: -100 if x == self.pad_token_id else x, labels)) | |
| # Store into a single dict | |
| input_batch['decoder_input_ids'] = decoder_input_batch['input_ids'] | |
| input_batch['decoder_attention_mask'] = decoder_input_batch['attention_mask'] | |
| input_batch['labels'] = labels | |
| return input_batch | |
| def __len__(self): | |
| return max(self.special_ids_to_tokens) + 1 | |
| def get_special_tokens_mask( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
| ) -> List[int]: | |
| """ | |
| Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
| special tokens using the tokenizer ``prepare_for_model`` method. | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not the token list is already formatted with special tokens for the model. | |
| Returns: | |
| :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
| """ | |
| if already_has_special_tokens: | |
| return super().get_special_tokens_mask( | |
| token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
| ) | |
| if token_ids_1 is None: | |
| return [1] + ([0] * len(token_ids_0)) + [1] | |
| return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
| def vocab_size(self): | |
| return 4 + len(self.sp_model) | |
| def get_vocab(self): | |
| vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
| vocab.update(self.added_tokens_encoder) | |
| return vocab | |
| def _tokenize(self, text: str) -> List[str]: | |
| return self.sp_model.encode(text.lower(), out_type=str) | |
| def convert_ids_to_tokens( | |
| self, ids: Union[int, List[int]], skip_special_tokens: bool = False | |
| ) -> Union[str, List[str]]: | |
| """ | |
| Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and | |
| added tokens. | |
| Args: | |
| ids (`int` or `List[int]`): | |
| The token id (or token ids) to convert to tokens. | |
| skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
| Whether or not to remove special tokens in the decoding. | |
| Returns: | |
| `str` or `List[str]`: The decoded token(s). | |
| """ | |
| if isinstance(ids, int): | |
| if ids not in self.added_tokens_decoder or ids in self.special_tokens_to_ids: | |
| return self._convert_id_to_token(ids, skip_special_tokens=skip_special_tokens) | |
| else: | |
| return self.added_tokens_decoder[ids].content | |
| tokens = [] | |
| for index in ids: | |
| index = int(index) | |
| if skip_special_tokens and index in (self.all_special_ids + list(self.special_tokens_to_ids.values())): | |
| continue | |
| if index not in self.added_tokens_decoder or index in self.special_tokens_to_ids: | |
| tokens.append(self._convert_id_to_token(index, skip_special_tokens=skip_special_tokens)) | |
| else: | |
| tokens.append(self.added_tokens_decoder[index].content) | |
| return tokens | |
| def _convert_token_to_id(self, token): | |
| """ Converts a token (str) in an id using the vocab. """ | |
| if token in self.special_tokens_to_ids: | |
| return self.special_tokens_to_ids[token] | |
| return self.sp_model.PieceToId(token) | |
| def _convert_id_to_token(self, index, skip_special_tokens=False): | |
| """Converts an index (integer) in a token (str) using the vocab.""" | |
| if skip_special_tokens and index in self.special_token_ids: | |
| return '' | |
| if index in self.special_ids_to_tokens: | |
| return self.special_ids_to_tokens[index] | |
| token = self.sp_model.IdToPiece(index) | |
| if '<0x' in token: | |
| char_rep = chr(int(token[1:-1], 0)) | |
| if char_rep.isprintable(): | |
| return char_rep | |
| return token | |
| def __getstate__(self): | |
| state = self.__dict__.copy() | |
| state["sp_model"] = None | |
| return state | |
| def __setstate__(self, d): | |
| self.__dict__ = d | |
| # for backward compatibility | |
| if not hasattr(self, "sp_model_kwargs"): | |
| self.sp_model_kwargs = {} | |
| self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
| self.sp_model.Load(self.vocab_file) | |
| def decode(self, inputs, skip_special_tokens=False, **kwargs): | |
| outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs) | |
| return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ') | |