Spaces:
Running
Running
Update src/app.py
#49
by
KhaqanNasir
- opened
- src/app.py +267 -44
src/app.py
CHANGED
@@ -164,32 +164,251 @@ def plot_attention(text, attention_weights):
|
|
164 |
return fig
|
165 |
|
166 |
def main():
|
167 |
-
|
168 |
-
st.
|
169 |
-
|
170 |
-
|
171 |
-
"""
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
news_text = st.text_area(
|
188 |
"Enter the news article to analyze:",
|
189 |
height=200,
|
190 |
placeholder="Paste your news article here..."
|
191 |
)
|
192 |
-
|
|
|
193 |
if st.button("Analyze"):
|
194 |
if news_text:
|
195 |
with st.spinner("Analyzing the news article..."):
|
@@ -200,42 +419,46 @@ def main():
|
|
200 |
col1, col2 = st.columns(2)
|
201 |
|
202 |
with col1:
|
203 |
-
st.
|
|
|
204 |
if result['label'] == 'FAKE':
|
205 |
-
st.
|
206 |
else:
|
207 |
-
st.
|
|
|
208 |
|
209 |
with col2:
|
210 |
-
st.
|
|
|
211 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
|
|
212 |
|
213 |
# Show attention visualization
|
214 |
-
st.
|
215 |
-
st.
|
216 |
-
The attention weights show which parts of the text the model focused on
|
217 |
-
while making its prediction. Higher weights indicate more important tokens.
|
218 |
-
""")
|
219 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
|
|
220 |
|
221 |
# Show model explanation
|
222 |
-
st.
|
|
|
223 |
if result['label'] == 'FAKE':
|
224 |
-
st.
|
225 |
-
The model identified this as fake news based on:
|
226 |
-
- Linguistic patterns typical of fake news
|
227 |
-
- Inconsistencies in the content
|
228 |
-
- Attention weights on suspicious phrases
|
229 |
-
""")
|
230 |
else:
|
231 |
-
st.
|
232 |
-
|
233 |
-
- Credible language patterns
|
234 |
-
- Consistent information
|
235 |
-
- Attention weights on factual statements
|
236 |
-
""")
|
237 |
else:
|
238 |
st.warning("Please enter a news article to analyze.")
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
if __name__ == "__main__":
|
241 |
-
main()
|
|
|
164 |
return fig
|
165 |
|
166 |
def main():
|
167 |
+
# Main Container
|
168 |
+
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
169 |
+
|
170 |
+
# Custom CSS with Poppins font
|
171 |
+
st.markdown("""
|
172 |
+
<style>
|
173 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');
|
174 |
+
|
175 |
+
* {
|
176 |
+
font-family: 'Poppins', sans-serif !important;
|
177 |
+
box-sizing: border-box;
|
178 |
+
}
|
179 |
+
|
180 |
+
.stApp {
|
181 |
+
background: #ffffff;
|
182 |
+
min-height: 100vh;
|
183 |
+
color: #1f2a44;
|
184 |
+
}
|
185 |
+
|
186 |
+
#MainMenu {visibility: hidden;}
|
187 |
+
footer {visibility: hidden;}
|
188 |
+
.stDeployButton {display: none;}
|
189 |
+
header {visibility: hidden;}
|
190 |
+
.stApp > header {visibility: hidden;}
|
191 |
+
|
192 |
+
/* Main Container */
|
193 |
+
.main-container {
|
194 |
+
max-width: 1200px;
|
195 |
+
margin: 0 auto;
|
196 |
+
padding: 1rem 2rem;
|
197 |
+
}
|
198 |
+
|
199 |
+
/* Header Section */
|
200 |
+
.header-section {
|
201 |
+
text-align: center;
|
202 |
+
margin-bottom: 2.5rem;
|
203 |
+
padding: 1.5rem 0;
|
204 |
+
}
|
205 |
+
|
206 |
+
.header-title {
|
207 |
+
font-size: 2.25rem;
|
208 |
+
font-weight: 700;
|
209 |
+
color: #1f2a44;
|
210 |
+
margin: 0;
|
211 |
+
}
|
212 |
+
|
213 |
+
/* Section Styling */
|
214 |
+
.section {
|
215 |
+
margin-bottom: 2.5rem;
|
216 |
+
max-width: 1200px;
|
217 |
+
margin-left: auto;
|
218 |
+
margin-right: auto;
|
219 |
+
padding: 0 1rem;
|
220 |
+
}
|
221 |
+
|
222 |
+
.section-title {
|
223 |
+
font-size: 1.5rem;
|
224 |
+
font-weight: 600;
|
225 |
+
color: #1f2a44;
|
226 |
+
margin-bottom: 1rem;
|
227 |
+
display: flex;
|
228 |
+
align-items: center;
|
229 |
+
gap: 0.5rem;
|
230 |
+
}
|
231 |
+
|
232 |
+
.section-text {
|
233 |
+
font-size: 0.95rem;
|
234 |
+
color: #6b7280;
|
235 |
+
line-height: 1.6;
|
236 |
+
max-width: 800px;
|
237 |
+
margin: 0 auto;
|
238 |
+
}
|
239 |
+
|
240 |
+
/* Sidebar */
|
241 |
+
.stSidebar {
|
242 |
+
background: #f4f7fa;
|
243 |
+
padding: 1rem;
|
244 |
+
}
|
245 |
+
|
246 |
+
/* Input Section */
|
247 |
+
.input-container {
|
248 |
+
max-width: 800px;
|
249 |
+
margin: 0 auto;
|
250 |
+
}
|
251 |
+
|
252 |
+
.stTextArea > div > div > textarea {
|
253 |
+
border-radius: 8px !important;
|
254 |
+
border: 1px solid #d1d5db !important;
|
255 |
+
padding: 1rem !important;
|
256 |
+
font-size: 1rem !important;
|
257 |
+
background: #ffffff !important;
|
258 |
+
min-height: 200px !important;
|
259 |
+
transition: all 0.2s ease !important;
|
260 |
+
}
|
261 |
+
|
262 |
+
.stTextArea > div > div > textarea:focus {
|
263 |
+
border-color: #6366f1 !important;
|
264 |
+
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important;
|
265 |
+
outline: none !important;
|
266 |
+
}
|
267 |
+
|
268 |
+
.stTextArea > div > div > textarea::placeholder {
|
269 |
+
color: #9ca3af !important;
|
270 |
+
}
|
271 |
+
|
272 |
+
/* Button Styling */
|
273 |
+
.stButton > button {
|
274 |
+
background: #6366f1 !important;
|
275 |
+
color: white !important;
|
276 |
+
border-radius: 8px !important;
|
277 |
+
padding: 0.75rem 2rem !important;
|
278 |
+
font-size: 1rem !important;
|
279 |
+
font-weight: 600 !important;
|
280 |
+
transition: all 0.2s ease !important;
|
281 |
+
border: none !important;
|
282 |
+
width: 100% !important;
|
283 |
+
max-width: 300px;
|
284 |
+
}
|
285 |
+
|
286 |
+
.stButton > button:hover {
|
287 |
+
background: #4f46e5 !important;
|
288 |
+
transform: translateY(-1px) !important;
|
289 |
+
}
|
290 |
+
|
291 |
+
/* Results Section */
|
292 |
+
.results-container {
|
293 |
+
margin-top: 1rem;
|
294 |
+
padding: 1rem;
|
295 |
+
border-radius: 8px;
|
296 |
+
max-width: 1200px;
|
297 |
+
margin-left: auto;
|
298 |
+
margin-right: auto;
|
299 |
+
}
|
300 |
+
|
301 |
+
.result-card {
|
302 |
+
padding: 1rem;
|
303 |
+
border-radius: 8px;
|
304 |
+
border-left: 4px solid transparent;
|
305 |
+
margin-bottom: 1rem;
|
306 |
+
}
|
307 |
+
|
308 |
+
.fake-news {
|
309 |
+
background: #fef2f2;
|
310 |
+
border-left-color: #ef4444;
|
311 |
+
}
|
312 |
+
|
313 |
+
.real-news {
|
314 |
+
background: #ecfdf5;
|
315 |
+
border-left-color: #10b981;
|
316 |
+
}
|
317 |
+
|
318 |
+
.prediction-badge {
|
319 |
+
font-weight: 600;
|
320 |
+
font-size: 1rem;
|
321 |
+
margin-bottom: 0.5rem;
|
322 |
+
display: flex;
|
323 |
+
align-items: center;
|
324 |
+
gap: 0.5rem;
|
325 |
+
}
|
326 |
+
|
327 |
+
.confidence-score {
|
328 |
+
font-weight: 600;
|
329 |
+
margin-left: auto;
|
330 |
+
font-size: 1rem;
|
331 |
+
}
|
332 |
+
|
333 |
+
/* Chart Containers */
|
334 |
+
.chart-container {
|
335 |
+
padding: 1rem;
|
336 |
+
border-radius: 8px;
|
337 |
+
margin: 1rem 0;
|
338 |
+
max-width: 1200px;
|
339 |
+
margin-left: auto;
|
340 |
+
margin-right: auto;
|
341 |
+
}
|
342 |
+
|
343 |
+
/* Footer */
|
344 |
+
.footer {
|
345 |
+
border-top: 1px solid #e5e7eb;
|
346 |
+
padding: 1.5rem 0;
|
347 |
+
text-align: center;
|
348 |
+
max-width: 1200px;
|
349 |
+
margin: 2rem auto 0;
|
350 |
+
}
|
351 |
+
|
352 |
+
/* Responsive Design */
|
353 |
+
@media (max-width: 1024px) {
|
354 |
+
.main-container {
|
355 |
+
padding: 1rem;
|
356 |
+
}
|
357 |
+
.section {
|
358 |
+
padding: 0 0.5rem;
|
359 |
+
}
|
360 |
+
}
|
361 |
+
|
362 |
+
@media (max-width: 768px) {
|
363 |
+
.header-title {
|
364 |
+
font-size: 1.75rem;
|
365 |
+
}
|
366 |
+
.section-title {
|
367 |
+
font-size: 1.25rem;
|
368 |
+
}
|
369 |
+
.section-text {
|
370 |
+
font-size: 0.9rem;
|
371 |
+
}
|
372 |
+
}
|
373 |
+
|
374 |
+
@media (max-width: 480px) {
|
375 |
+
.header-title {
|
376 |
+
font-size: 1.5rem;
|
377 |
+
}
|
378 |
+
.section-title {
|
379 |
+
font-size: 1.1rem;
|
380 |
+
}
|
381 |
+
.section-text {
|
382 |
+
font-size: 0.85rem;
|
383 |
+
}
|
384 |
+
}
|
385 |
+
</style>
|
386 |
+
""", unsafe_allow_html=True)
|
387 |
+
|
388 |
+
# Header Section
|
389 |
+
st.markdown('<div class="header-section">', unsafe_allow_html=True)
|
390 |
+
st.markdown('<h1 class="header-title">π° TruthCheck - Advanced Fake News Detection System</h1>', unsafe_allow_html=True)
|
391 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
392 |
+
|
393 |
+
# Main Content
|
394 |
+
st.markdown('<div class="section">', unsafe_allow_html=True)
|
395 |
+
st.markdown('<p class="section-text">This application uses a hybrid deep learning model (BERT + BiLSTM + Attention) to detect fake news articles. Enter a news article below to analyze it.</p>', unsafe_allow_html=True)
|
396 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
397 |
+
|
398 |
+
|
399 |
+
# News Analysis Section
|
400 |
+
st.markdown('<div class="section">', unsafe_allow_html=True)
|
401 |
+
st.markdown('<h2 class="section-title">π News Analysis</h2>', unsafe_allow_html=True)
|
402 |
+
|
403 |
+
# Input Section
|
404 |
+
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
405 |
news_text = st.text_area(
|
406 |
"Enter the news article to analyze:",
|
407 |
height=200,
|
408 |
placeholder="Paste your news article here..."
|
409 |
)
|
410 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
411 |
+
|
412 |
if st.button("Analyze"):
|
413 |
if news_text:
|
414 |
with st.spinner("Analyzing the news article..."):
|
|
|
419 |
col1, col2 = st.columns(2)
|
420 |
|
421 |
with col1:
|
422 |
+
st.markdown('<div class="results-container">', unsafe_allow_html=True)
|
423 |
+
st.markdown('<h3 class="section-title">π Prediction</h3>', unsafe_allow_html=True)
|
424 |
if result['label'] == 'FAKE':
|
425 |
+
st.markdown(f'<div class="result-card fake-news"><div class="prediction-badge">π¨ Fake News Detected <span class="confidence-score">{result["confidence"]:.2%}</span></div></div>', unsafe_allow_html=True)
|
426 |
else:
|
427 |
+
st.markdown(f'<div class="result-card real-news"><div class="prediction-badge">β
Authentic News <span class="confidence-score">{result["confidence"]:.2%}</span></div></div>', unsafe_allow_html=True)
|
428 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
429 |
|
430 |
with col2:
|
431 |
+
st.markdown('<div class="results-container">', unsafe_allow_html=True)
|
432 |
+
st.markdown('<h3 class="section-title">π Confidence Scores</h3>', unsafe_allow_html=True)
|
433 |
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
434 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
435 |
|
436 |
# Show attention visualization
|
437 |
+
st.markdown('<div class="section">', unsafe_allow_html=True)
|
438 |
+
st.markdown('<h3 class="section-title">ποΈ Attention Analysis</h3>', unsafe_allow_html=True)
|
439 |
+
st.markdown('<p class="section-text">The attention weights show which parts of the text the model focused on while making its prediction. Higher weights indicate more important tokens.</p>', unsafe_allow_html=True)
|
|
|
|
|
440 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
441 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
442 |
|
443 |
# Show model explanation
|
444 |
+
st.markdown('<div class="section">', unsafe_allow_html=True)
|
445 |
+
st.markdown('<h3 class="section-title">π Model Explanation</h3>', unsafe_allow_html=True)
|
446 |
if result['label'] == 'FAKE':
|
447 |
+
st.markdown('<p class="section-text">The model identified this as fake news based on:<ul><li>Linguistic patterns typical of fake news</li><li>Inconsistencies in the content</li><li>Attention weights on suspicious phrases</li></ul></p>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
448 |
else:
|
449 |
+
st.markdown('<p class="section-text">The model identified this as real news based on:<ul><li>Credible language patterns</li><li>Consistent information</li><li>Attention weights on factual statements</li></ul></p>', unsafe_allow_html=True)
|
450 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
451 |
else:
|
452 |
st.warning("Please enter a news article to analyze.")
|
453 |
|
454 |
+
# Footer
|
455 |
+
st.markdown("---")
|
456 |
+
st.markdown(
|
457 |
+
'<div class="footer"><p style="text-align: center; font-weight: 600; font-size: 16px;">π» Developed with β€οΈ using Streamlit | Β© 2025</p></div>',
|
458 |
+
unsafe_allow_html=True
|
459 |
+
)
|
460 |
+
|
461 |
+
st.markdown('</div>', unsafe_allow_html=True) # Close main-container
|
462 |
+
|
463 |
if __name__ == "__main__":
|
464 |
+
main()
|