File size: 9,661 Bytes
be25a4c
 
fdfa8a9
be25a4c
 
 
 
fdfa8a9
be25a4c
 
 
 
fdfa8a9
be25a4c
fdfa8a9
 
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfa8a9
 
 
 
 
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfa8a9
be25a4c
 
 
fdfa8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfa8a9
 
 
 
 
 
 
 
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfa8a9
be25a4c
 
fdfa8a9
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdfa8a9
 
 
be25a4c
 
 
fdfa8a9
 
 
be25a4c
 
 
fdfa8a9
 
 
 
 
 
be25a4c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from utils import (
    update_leaderboard_multilingual, 
    update_leaderboard_one_vs_all,
    handle_evaluation,
    process_results_file,
    create_html_image,
)
import os
from datasets import load_dataset
import gradio as gr

if __name__ == "__main__":
    
    # Evaluation dataset path
    DATA_PATH = "atlasia/Arabic-LID-Leaderboard"
    
    # All Metrics
    metrics = [
        'f1_score',
        'precision',
        'recall',
        'specificity',
        'false_positive_rate',
        'false_negative_rate',
        'negative_predictive_value',
        'n_test_samples',
    ]
    # Default metrics to display    
    default_metrics = [
        'f1_score', 
        'precision', 
        'recall', 
        'false_positive_rate', 
        'false_negative_rate'
    ]
    # default language to display
    default_languages = [
        'Morocco',
        'MSA',
        'Egypt',
        'Algeria',
        'Tunisia',
        'Levantine',
    ]
    
    # Load test dataset
    test_dataset = load_dataset(DATA_PATH, split='test')   
    
    # Supported dialects
    all_target_languages = list(test_dataset.unique("dialect"))
    supported_dialects = all_target_languages + ['All']
    languages_to_display_one_vs_all = all_target_languages # everything except All
        
    with gr.Blocks() as app:
        base_path = os.path.dirname(__file__)
        local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
        
        gr.HTML(create_html_image(local_image_path))
        gr.Markdown("# 🏅 Open Arabic Dialect Identification Leaderboard")
        
        # Multilingual model leaderboard
        with gr.Tab("Multilingual model leaderboard"):
            gr.Markdown("""

                        Complete leaderboard across multiple arabic dialects. 

                        Compare the performance of different models across various metrics such as FNR, FPR, and other clasical metrics.

                        """
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Select country to display")
                    country_selector = gr.Dropdown(
                        choices=supported_dialects,
                        value='Morocco', # Default to Morocco of course
                        label="Country"
                    )
                
                with gr.Column(scale=2):
                    gr.Markdown("### Select metrics to display")
                    metric_checkboxes = gr.CheckboxGroup(
                        choices=metrics,
                        value=default_metrics,
                        label="Metrics"
                    )
            
            with gr.Row():
                leaderboard_table = gr.DataFrame(
                    interactive=False
                )

            gr.Markdown("</br>")
            
            gr.Markdown("## Contribute to the Leaderboard")
            gr.Markdown("""

                        We welcome contributions from the community! 

                        If you have a model that you would like to see on the leaderboard, please use the 'Evaluate a model' or 'Upload your results' tabs to submit your model's performance.

                        Let's work together to improve Arabic dialect identification! 🚀

                        """)
            
        # Binary model leaderboard
        with gr.Tab("One-vs-All leaderboard"):
            
            gr.Markdown("""

                        A kind of one-vs-all approach for evaluating LID models across multiple arabic dialects. 

                        Computes the `false_positive_rate` of different models for a given target language.

                        This should help you understand how well a model can identify a specific dialect by

                        showing **how often it misclassifies other dialects as the target dialect**.

                        """
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Select your target language")
                    target_language_selector = gr.Dropdown(
                        choices=languages_to_display_one_vs_all,
                        value='Morocco', # Default to Morocco of course
                        label="Target Language"
                    )
                
                with gr.Column(scale=2):
                    gr.Markdown("### Select languages to compare to")
                    languages_checkboxes = gr.CheckboxGroup(
                        choices=languages_to_display_one_vs_all,
                        value=default_languages,
                        label="Languages"
                    )
                
            with gr.Row():
                binary_leaderboard_table = gr.DataFrame(
                    interactive=False
                )
            

        with gr.Tab("Evaluate a model"):
            gr.Markdown("Suggest a model to evaluate 🤗 (Supports only **Fasttext** models as SfayaLID, GlotLID, OpenLID, etc.)")
            gr.Markdown("For other models, you are welcome to **submit your results** through the upload section.")
            
            model_path = gr.Textbox(label="Model Path", placeholder='path/to/model')
            model_path_bin = gr.Textbox(label=".bin filename", placeholder='model.bin')
            gr.Markdown("### **⚠️ To ensure correct results, tick this when the model's labels are the iso_codes**")
            use_mapping = gr.Checkbox(label="Does not map to country")
            eval_button = gr.Button("Evaluate", value=False)  # Initially disabled
            
            # Status message area
            status_message = gr.Markdown(value="")
            def update_status_message():
                return "### **⚠️Evaluating... Please wait...**"
            
            eval_button.click(update_status_message, outputs=[status_message])
            
            eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message])

        with gr.Tab("Upload your results"):

            # Define a code block to display
            code_snippet = """ 

            ```python

            

            # Load your model

            model = ... # Load your model here

            

            # Load evaluation benchmark

            eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test').to_pandas() # do not change this line :)

            

            # Predict labels using your model

            eval_dataset['preds'] = eval_dataset['text'].apply(lambda text: predict_label(text, model)) # predict_label is a function that you need to define for your model

            

            # now drop the columns that are not needed, i.e. 'text', 'metadata' and 'dataset_source'

            df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])

            df_eval.to_csv('your_model_name.csv')

            

            # submit your results: 'your_model_name.csv' to the leaderboard

            

            ```

            """
            
            gr.Markdown("## Upload your results to the leaderboard 🚀")
            gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
            gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!")
            gr.Markdown(code_snippet)

            uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
            file = gr.File(label="Upload your results")
            upload_button = gr.Button("Upload")
            upload_button.click(process_results_file, inputs=[file, uploaded_model_name], outputs=[leaderboard_table])
        
        # Update multilangual table when any input changes
        country_selector.change(
            update_leaderboard_multilingual,
            inputs=[country_selector, metric_checkboxes],
            outputs=leaderboard_table
        )
        
        metric_checkboxes.change(
            update_leaderboard_multilingual,
            inputs=[country_selector, metric_checkboxes],
            outputs=leaderboard_table
        )
        
        # Update binary table when any input changes
        target_language_selector.change(
            update_leaderboard_one_vs_all,
            inputs=[target_language_selector, languages_checkboxes],
            outputs=[binary_leaderboard_table, languages_checkboxes]
        )
        
        languages_checkboxes.change(
            update_leaderboard_one_vs_all,
            inputs=[target_language_selector, languages_checkboxes],
            outputs=[binary_leaderboard_table, languages_checkboxes]
        )
        
        # Define load event to run at startup
        app.load(
            update_leaderboard_one_vs_all,
            inputs=[target_language_selector, languages_checkboxes],
            outputs=[binary_leaderboard_table, languages_checkboxes]
        )
        
        app.load(
            update_leaderboard_multilingual,
            inputs=[country_selector, metric_checkboxes],
            outputs=leaderboard_table
        )
        
    app.launch(allowed_paths=[base_path])