File size: 19,859 Bytes
be25a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import base64
from fasttext import load_model
from huggingface_hub import hf_hub_download
import os
import json
import pandas as pd
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score, matthews_corrcoef
import numpy as np
from datasets import load_dataset
import fasttext

# Constants
MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All"
BIN_FILENAME = "model_multi_v3_2fpr.bin"
BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json"
MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json"
DATA_PATH = "atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced"

target_label = "Morocco"
is_binary = False

metrics = [
    'f1_score',
    'precision',
    'recall',
    'specificity',
    'false_positive_rate',
    'false_negative_rate',
    'negative_predictive_value',
    'n_test_samples',
]

default_metrics = [
    'f1_score', 
    'precision', 
    'recall', 
    'false_positive_rate', 
    'false_negative_rate'
]

language_mapping_dict = {   
    'ace_Arab': 'Acehnese',
    'acm_Arab': 'Mesopotamia',  # 'Gilit Mesopotamian'
    'aeb_Arab': 'Tunisia',
    'ajp_Arab': 'Levantine',  # 'South Levantine'
    'apc_Arab': 'Levantine',
    'arb_Arab': 'MSA',
    'arq_Arab': 'Algeria',
    'ars_Arab': 'Saudi',  # Najdi is primarily Saudi Arabian
    'ary_Arab': 'Morocco',
    'arz_Arab': 'Egypt',
    'ayp_Arab': 'Mesopotamia',  # 'North Mesopotamian'
    'azb_Arab': 'Azerbaijan',  # South Azerbaijani pertains to this region
    'bcc_Arab': 'Balochistan',  # Southern Balochi is from Balochistan
    'bjn_Arab': 'Indonesia',  # Banjar is spoken in Indonesia
    'brh_Arab': 'Pakistan',  # Brahui is spoken in Pakistan
    'ckb_Arab': 'Kurdistan',  # Central Kurdish is mainly in Iraq
    'fuv_Arab': 'Nigeria', # Hausa States Fulfulde
    'glk_Arab': 'Iran',  # Gilaki is spoken in Iran
    'hac_Arab': 'Iran',  # Gurani is also primarily spoken in Iran
    'kas_Arab': 'Kashmir',
    'knc_Arab': 'Nigeria',  # Central Kanuri is in Nigeria
    'lki_Arab': 'Iran',  # Laki is from Iran
    'lrc_Arab': 'Iran',  # Northern Luri is from Iran
    'min_Arab': 'Indonesia',  # Minangkabau is spoken in Indonesia
    'mzn_Arab': 'Iran',  # Mazanderani is spoken in Iran
    'ota_Arab': 'Turkey',  # Ottoman Turkish
    'pbt_Arab': 'Afghanistan',  # Southern Pashto
    'pnb_Arab': 'Pakistan',  # Western Panjabi
    'sdh_Arab': 'Iraq',  # Southern Kurdish
    'shu_Arab': 'Chad',  # Chadian Arabic
    'skr_Arab': 'Pakistan',  # Saraiki
    'snd_Arab': 'Pakistan',  # Sindhi
    'sus_Arab': 'Guinea',  # Susu
    'tuk_Arab': 'Turkmenistan',  # Turkmen
    'uig_Arab': 'Uighur (China)',  # Uighur
    'urd_Arab': 'Pakistan',  # Urdu
    'uzs_Arab': 'Uzbekistan',  # Southern Uzbek
    'zsm_Arab': 'Malaysia'  # Standard Malay
}

def predict_label(text, model, language_mapping_dict, use_mapping=False):
    # Remove any newline characters and strip whitespace
    text = str(text).strip().replace('\n', ' ')
    
    if text == '':
        return 'Other'
    
    try:
        # Get top prediction
        prediction = model.predict(text, 1)
        
        # Extract label and remove __label__ prefix
        label = prediction[0][0].replace('__label__', '')
        
        # Extract confidence score
        confidence = prediction[1][0]
        
        # map label to language using language_mapping_dict
        if use_mapping:
            label = language_mapping_dict.get(label, 'Other')
        return label
    
    except Exception as e:
        print(f"Error processing text: {text}")
        print(f"Exception: {e}")
        return {'prediction_label': 'Error', 'prediction_confidence': 0.0}

def compute_classification_metrics(test_dataset):
    """

    Compute comprehensive classification metrics for each class.

    

    Args:

        data (pd.DataFrame): DataFrame containing 'dialect' as true labels and 'preds' as predicted labels.

        

    Returns:

        pd.DataFrame: DataFrame with detailed metrics for each class.

    """
    # transform the dataset into a DataFrame
    data = pd.DataFrame(test_dataset)
    # Extract true labels and predictions
    true_labels = list(data['dialect'])
    predicted_labels = list(data['preds'])

    # Handle all unique labels
    labels = sorted(list(set(true_labels + predicted_labels)))
    label_to_index = {label: index for index, label in enumerate(labels)}
    
    # Convert labels to indices
    true_indices = [label_to_index[label] for label in true_labels]
    pred_indices = [label_to_index[label] for label in predicted_labels]

    # Compute basic metrics
    f1_scores = f1_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
    precision_scores = precision_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
    recall_scores = recall_score(true_indices, pred_indices, average=None, labels=range(len(labels)))

    # Compute confusion matrix
    conf_mat = confusion_matrix(true_indices, pred_indices, labels=range(len(labels)))

    # Calculate various metrics per class
    FP = conf_mat.sum(axis=0) - np.diag(conf_mat)  # False Positives
    FN = conf_mat.sum(axis=1) - np.diag(conf_mat)  # False Negatives
    TP = np.diag(conf_mat)                         # True Positives
    TN = conf_mat.sum() - (FP + FN + TP)          # True Negatives

    # Calculate sample counts per class
    samples_per_class = np.bincount(true_indices, minlength=len(labels))

    # Calculate additional metrics
    with np.errstate(divide='ignore', invalid='ignore'):
        fp_rate = FP / (FP + TN)  # False Positive Rate
        fn_rate = FN / (FN + TP)  # False Negative Rate
        specificity = TN / (TN + FP)  # True Negative Rate
        npv = TN / (TN + FN)  # Negative Predictive Value
        
        # Replace NaN/inf with 0
        metrics = [fp_rate, fn_rate, specificity, npv]
        metrics = [np.nan_to_num(m, nan=0.0, posinf=0.0, neginf=0.0) for m in metrics]
        fp_rate, fn_rate, specificity, npv = metrics

    # Calculate overall metrics
    balanced_acc = balanced_accuracy_score(true_indices, pred_indices)
    mcc = matthews_corrcoef(true_indices, pred_indices)

    # Compile results into a DataFrame
    result_df = pd.DataFrame({
        'country': labels,
        'samples': samples_per_class,
        'f1_score': f1_scores,
        'precision': precision_scores,
        'recall': recall_scores,
        'specificity': specificity,
        'false_positive_rate': fp_rate,
        'false_negative_rate': fn_rate,
        'true_positives': TP,
        'false_positives': FP,
        'true_negatives': TN,
        'false_negatives': FN,
        'negative_predictive_value': npv
    })

    # Sort by number of samples (descending)
    result_df = result_df.sort_values('samples', ascending=False)

    # Calculate and add summary metrics
    summary_metrics = {
        'macro_f1': f1_score(true_indices, pred_indices, average='macro'),
        'weighted_f1': f1_score(true_indices, pred_indices, average='weighted'),
        'micro_f1': f1_score(true_indices, pred_indices, average='micro'),
        'balanced_accuracy': balanced_acc,
        'matthews_correlation': mcc
    }

    # Format all numeric columns to 4 decimal places
    numeric_cols = result_df.select_dtypes(include=[np.number]).columns
    result_df[numeric_cols] = result_df[numeric_cols].round(4)
    
    print(f'result_df: {result_df}')

    return result_df, summary_metrics

def make_binary(dialect, target):
    if dialect != target:
        return 'Other'
    return target

def run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False):
    
    # Predict labels using the model
    print(f"[INFO] Running predictions...")
    data_test['preds'] = data_test['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))

    # map to binary
    df_test_preds = data_test.copy()
    df_test_preds.loc[df_test_preds['dialect'] == TARGET_LANG, 'dialect'] = TARGET_LANG
    df_test_preds.loc[df_test_preds['dialect'] != TARGET_LANG, 'dialect'] = 'Other'
    
    # compute the fpr per dialect
    dialect_counts = data_test.groupby('dialect')['dialect'].count().reset_index(name='size')
    result_df = pd.merge(dialect_counts, data_test, on='dialect')
    result_df = result_df.groupby(['dialect', 'size', 'preds'])['preds'].count()/result_df.groupby(['dialect', 'size'])['preds'].count()
    result_df.sort_index(ascending=False, level='size', inplace=True)
    
    # group by dialect and get the false positive rate
    out = result_df.copy()
    out.name = 'false_positive_rate'
    out = out.reset_index()
    out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size'])
    
    return out

def update_darija_binary_leaderboard(result_df, model_name, BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"):
    try:
        with open(BINARY_LEADERBOARD_FILE, "r") as f:
            data = json.load(f)
    except FileNotFoundError:
        data = []
        
    # Process the results for each dialect/country
    for _, row in result_df.iterrows():
        country = row['dialect']
        # skip 'Other' class, it is considered as the null space
        if country == 'Other':
            continue
            
        # Find existing country entry or create new one
        country_entry = next((item for item in data if country in item), None)
        if country_entry is None:
            country_entry = {country: {}}
            data.append(country_entry)
        
        # Update the model metrics directly under the model name
        if country not in country_entry:
            country_entry[country] = {}
        country_entry[country][model_name] = float(row['false_positive_rate'])
        
        if country_entry[country].get("n_test_samples") is None:
            country_entry[country]["n_test_samples"] = int(row['size'])

    # Save updated leaderboard data
    with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
        json.dump(data, f, indent=4)

def handle_evaluation(model_path, model_path_bin, use_mapping=False):
    # run the evaluation
    result_df, _ = run_eval(model_path, model_path_bin, language_mapping_dict, use_mapping=use_mapping)
    # set the model name
    model_name = model_path + '/' + model_path_bin
    # update the leaderboard
    update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE)
    # update the leaderboard table
    df = load_leaderboard_multilingual()
    
    return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)

def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping=False):
    """Run evaluation on a dataset and compute metrics.



    Args:

        model: The model to evaluate.

        DATA_PATH (str): Path to the dataset.

        is_binary (bool): If True, evaluate as binary classification.

                          If False, evaluate as multi-class classification.

        target_label (str): The target class label in binary mode.



    Returns:

        pd.DataFrame: A DataFrame containing evaluation metrics.

    """

    # download model and get the model path
    model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None)
   
    # Load the trained model
    print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...")
    model = fasttext.load_model(model_path)
    
    # Load the evaluation dataset
    print(f"[INFO] Loading evaluation dataset from Path: atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced...")
    eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test')
    
    # Transform to pandas DataFrame
    print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...")
    df_eval = pd.DataFrame(eval_dataset)

    # Predict labels using the model
    print(f"[INFO] Running predictions...")
    df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
    
    # now drop the columns that are not needed, i.e. 'text'
    df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])

    # Compute evaluation metrics
    print(f"[INFO] Computing metrics...")
    result_df, _ = compute_classification_metrics(df_eval)
    
    # update_darija_multilingual_leaderboard(result_df, model_path, MULTILINGUAL_LEADERBOARD_FILE)
    
    return result_df, df_eval  

def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/"):
    try:
        if file is None:
            return "Please upload a file."
            
        # Clean the model name to be safe for file paths
        uploaded_model_name = uploaded_model_name.strip().replace(" ", "_")
        print(f"[INFO] uploaded_model_name: {uploaded_model_name}")
        
        # Create the directory for saving submissions
        path_saving = os.path.join(base_path_save, uploaded_model_name)
        os.makedirs(path_saving, exist_ok=True)
        
        # Define the full path to save the file
        saved_file_path = os.path.join(path_saving, 'submission.csv')
        
        # Read the uploaded file as DataFrame
        print(f"[INFO] Loading results...")
        df_eval = pd.read_csv(file.name)
        
        # Save the DataFrame
        print(f"[INFO] Saving the file locally in: {saved_file_path}")
        df_eval.to_csv(saved_file_path, index=False)
        
    except Exception as e:
        return f"Error processing file: {str(e)}"
    
    # Compute evaluation metrics
    print(f"[INFO] Computing metrics...")
    result_df, _ = compute_classification_metrics(df_eval)
    
    # Update the leaderboards
    update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE)
    
    # result_df_binary = run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False)
    # update_darija_binary_leaderboard(result_df, uploaded_model_name, BINARY_LEADERBOARD_FILE)
    
    # update the leaderboard table
    df = load_leaderboard_multilingual()
    
    return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)
    
def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
    
    # Load leaderboard data
    current_dir = os.path.dirname(os.path.abspath(__file__))
    MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
    
    try:
        with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
            data = json.load(f)
    except FileNotFoundError:
        data = []
        
    # Process the results for each dialect/country
    for _, row in result_df.iterrows():
        country = row['country']
        # skip 'Other' class, it is considered as the null space
        if country == 'Other':
            continue
            
        # Create metrics dictionary directly
        metrics = {
            'f1_score': float(row['f1_score']),
            'precision': float(row['precision']),
            'recall': float(row['recall']),
            'specificity': float(row['specificity']),
            'false_positive_rate': float(row['false_positive_rate']),
            'false_negative_rate': float(row['false_negative_rate']),
            'negative_predictive_value': float(row['negative_predictive_value']),
            'n_test_samples': int(row['samples'])
        }
        
        # Find existing country entry or create new one
        country_entry = next((item for item in data if country in item), None)
        if country_entry is None:
            country_entry = {country: {}}
            data.append(country_entry)
        
        # Update the model metrics directly under the model name
        if country not in country_entry:
            country_entry[country] = {}
        country_entry[country][model_name] = metrics
    
    # Save updated leaderboard data
    with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
        json.dump(data, f, indent=4)
        

def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
    current_dir = os.path.dirname(os.path.abspath(__file__))
    MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
    
    with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
        data = json.load(f)
    
    # Initialize lists to store the flattened data
    rows = []
    
    # Process each country's data
    for country_data in data:
        for country, models in country_data.items():
            for model_name, metrics in models.items():
                row = {
                    'country': country,
                    'model': model_name,
                }
                # Add all metrics to the row
                row.update(metrics)
                rows.append(row)
    
    # Convert to DataFrame
    df = pd.DataFrame(rows)
    return df

def create_leaderboard_display_multilingual(df, selected_country, selected_metrics):
    # Filter by country if specified
    if selected_country and selected_country.upper() != 'ALL':
        print(f"Filtering leaderboard by country: {selected_country}")
        df = df[df['country'] == selected_country]
        df = df.drop(columns=['country'])
    
        # Select only the chosen metrics (plus 'model' column)
        columns_to_show = ['model'] + [metric for metric in selected_metrics if metric in df.columns]
    
    else:
        # Select all metrics (plus 'country' and 'model' columns), if no country is selected or 'All' is selected for ease of comparison
        columns_to_show = ['model', 'country'] + selected_metrics
        
    # Sort by first selected metric by default
    if selected_metrics:
        df = df.sort_values(by=selected_metrics[0], ascending=False)
    
    df = df[columns_to_show]
    
    # Format numeric columns to 4 decimal places
    numeric_cols = df.select_dtypes(include=['float64']).columns
    df[numeric_cols] = df[numeric_cols].round(4)
    
    return df

def update_leaderboard_multilingual(country, selected_metrics):
    if not selected_metrics:  # If no metrics selected, show all
        selected_metrics = metrics
    df = load_leaderboard_multilingual()
    display_df = create_leaderboard_display_multilingual(df, country, selected_metrics)
    return display_df

def encode_image_to_base64(image_path):
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode()
    return encoded_string

def create_html_image(image_path):
    # Get base64 string of image
    img_base64 = encode_image_to_base64(image_path)
    
    # Create HTML string with embedded image and centering styles
    html_string = f"""

    <div style="display: flex; justify-content: center; align-items: center; width: 100%; text-align: center;">

        <div style="max-width: 800px; margin: auto;">

            <img src="data:image/jpeg;base64,{img_base64}"

                 style="max-width: 75%; height: auto; display: block; margin: 0 auto; margin-top: 50px;"

                 alt="Displayed Image">

        </div>

    </div>

    """
    return html_string