File size: 19,859 Bytes
be25a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import base64
from fasttext import load_model
from huggingface_hub import hf_hub_download
import os
import json
import pandas as pd
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, balanced_accuracy_score, matthews_corrcoef
import numpy as np
from datasets import load_dataset
import fasttext
# Constants
MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All"
BIN_FILENAME = "model_multi_v3_2fpr.bin"
BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json"
MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json"
DATA_PATH = "atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced"
target_label = "Morocco"
is_binary = False
metrics = [
'f1_score',
'precision',
'recall',
'specificity',
'false_positive_rate',
'false_negative_rate',
'negative_predictive_value',
'n_test_samples',
]
default_metrics = [
'f1_score',
'precision',
'recall',
'false_positive_rate',
'false_negative_rate'
]
language_mapping_dict = {
'ace_Arab': 'Acehnese',
'acm_Arab': 'Mesopotamia', # 'Gilit Mesopotamian'
'aeb_Arab': 'Tunisia',
'ajp_Arab': 'Levantine', # 'South Levantine'
'apc_Arab': 'Levantine',
'arb_Arab': 'MSA',
'arq_Arab': 'Algeria',
'ars_Arab': 'Saudi', # Najdi is primarily Saudi Arabian
'ary_Arab': 'Morocco',
'arz_Arab': 'Egypt',
'ayp_Arab': 'Mesopotamia', # 'North Mesopotamian'
'azb_Arab': 'Azerbaijan', # South Azerbaijani pertains to this region
'bcc_Arab': 'Balochistan', # Southern Balochi is from Balochistan
'bjn_Arab': 'Indonesia', # Banjar is spoken in Indonesia
'brh_Arab': 'Pakistan', # Brahui is spoken in Pakistan
'ckb_Arab': 'Kurdistan', # Central Kurdish is mainly in Iraq
'fuv_Arab': 'Nigeria', # Hausa States Fulfulde
'glk_Arab': 'Iran', # Gilaki is spoken in Iran
'hac_Arab': 'Iran', # Gurani is also primarily spoken in Iran
'kas_Arab': 'Kashmir',
'knc_Arab': 'Nigeria', # Central Kanuri is in Nigeria
'lki_Arab': 'Iran', # Laki is from Iran
'lrc_Arab': 'Iran', # Northern Luri is from Iran
'min_Arab': 'Indonesia', # Minangkabau is spoken in Indonesia
'mzn_Arab': 'Iran', # Mazanderani is spoken in Iran
'ota_Arab': 'Turkey', # Ottoman Turkish
'pbt_Arab': 'Afghanistan', # Southern Pashto
'pnb_Arab': 'Pakistan', # Western Panjabi
'sdh_Arab': 'Iraq', # Southern Kurdish
'shu_Arab': 'Chad', # Chadian Arabic
'skr_Arab': 'Pakistan', # Saraiki
'snd_Arab': 'Pakistan', # Sindhi
'sus_Arab': 'Guinea', # Susu
'tuk_Arab': 'Turkmenistan', # Turkmen
'uig_Arab': 'Uighur (China)', # Uighur
'urd_Arab': 'Pakistan', # Urdu
'uzs_Arab': 'Uzbekistan', # Southern Uzbek
'zsm_Arab': 'Malaysia' # Standard Malay
}
def predict_label(text, model, language_mapping_dict, use_mapping=False):
# Remove any newline characters and strip whitespace
text = str(text).strip().replace('\n', ' ')
if text == '':
return 'Other'
try:
# Get top prediction
prediction = model.predict(text, 1)
# Extract label and remove __label__ prefix
label = prediction[0][0].replace('__label__', '')
# Extract confidence score
confidence = prediction[1][0]
# map label to language using language_mapping_dict
if use_mapping:
label = language_mapping_dict.get(label, 'Other')
return label
except Exception as e:
print(f"Error processing text: {text}")
print(f"Exception: {e}")
return {'prediction_label': 'Error', 'prediction_confidence': 0.0}
def compute_classification_metrics(test_dataset):
"""
Compute comprehensive classification metrics for each class.
Args:
data (pd.DataFrame): DataFrame containing 'dialect' as true labels and 'preds' as predicted labels.
Returns:
pd.DataFrame: DataFrame with detailed metrics for each class.
"""
# transform the dataset into a DataFrame
data = pd.DataFrame(test_dataset)
# Extract true labels and predictions
true_labels = list(data['dialect'])
predicted_labels = list(data['preds'])
# Handle all unique labels
labels = sorted(list(set(true_labels + predicted_labels)))
label_to_index = {label: index for index, label in enumerate(labels)}
# Convert labels to indices
true_indices = [label_to_index[label] for label in true_labels]
pred_indices = [label_to_index[label] for label in predicted_labels]
# Compute basic metrics
f1_scores = f1_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
precision_scores = precision_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
recall_scores = recall_score(true_indices, pred_indices, average=None, labels=range(len(labels)))
# Compute confusion matrix
conf_mat = confusion_matrix(true_indices, pred_indices, labels=range(len(labels)))
# Calculate various metrics per class
FP = conf_mat.sum(axis=0) - np.diag(conf_mat) # False Positives
FN = conf_mat.sum(axis=1) - np.diag(conf_mat) # False Negatives
TP = np.diag(conf_mat) # True Positives
TN = conf_mat.sum() - (FP + FN + TP) # True Negatives
# Calculate sample counts per class
samples_per_class = np.bincount(true_indices, minlength=len(labels))
# Calculate additional metrics
with np.errstate(divide='ignore', invalid='ignore'):
fp_rate = FP / (FP + TN) # False Positive Rate
fn_rate = FN / (FN + TP) # False Negative Rate
specificity = TN / (TN + FP) # True Negative Rate
npv = TN / (TN + FN) # Negative Predictive Value
# Replace NaN/inf with 0
metrics = [fp_rate, fn_rate, specificity, npv]
metrics = [np.nan_to_num(m, nan=0.0, posinf=0.0, neginf=0.0) for m in metrics]
fp_rate, fn_rate, specificity, npv = metrics
# Calculate overall metrics
balanced_acc = balanced_accuracy_score(true_indices, pred_indices)
mcc = matthews_corrcoef(true_indices, pred_indices)
# Compile results into a DataFrame
result_df = pd.DataFrame({
'country': labels,
'samples': samples_per_class,
'f1_score': f1_scores,
'precision': precision_scores,
'recall': recall_scores,
'specificity': specificity,
'false_positive_rate': fp_rate,
'false_negative_rate': fn_rate,
'true_positives': TP,
'false_positives': FP,
'true_negatives': TN,
'false_negatives': FN,
'negative_predictive_value': npv
})
# Sort by number of samples (descending)
result_df = result_df.sort_values('samples', ascending=False)
# Calculate and add summary metrics
summary_metrics = {
'macro_f1': f1_score(true_indices, pred_indices, average='macro'),
'weighted_f1': f1_score(true_indices, pred_indices, average='weighted'),
'micro_f1': f1_score(true_indices, pred_indices, average='micro'),
'balanced_accuracy': balanced_acc,
'matthews_correlation': mcc
}
# Format all numeric columns to 4 decimal places
numeric_cols = result_df.select_dtypes(include=[np.number]).columns
result_df[numeric_cols] = result_df[numeric_cols].round(4)
print(f'result_df: {result_df}')
return result_df, summary_metrics
def make_binary(dialect, target):
if dialect != target:
return 'Other'
return target
def run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False):
# Predict labels using the model
print(f"[INFO] Running predictions...")
data_test['preds'] = data_test['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
# map to binary
df_test_preds = data_test.copy()
df_test_preds.loc[df_test_preds['dialect'] == TARGET_LANG, 'dialect'] = TARGET_LANG
df_test_preds.loc[df_test_preds['dialect'] != TARGET_LANG, 'dialect'] = 'Other'
# compute the fpr per dialect
dialect_counts = data_test.groupby('dialect')['dialect'].count().reset_index(name='size')
result_df = pd.merge(dialect_counts, data_test, on='dialect')
result_df = result_df.groupby(['dialect', 'size', 'preds'])['preds'].count()/result_df.groupby(['dialect', 'size'])['preds'].count()
result_df.sort_index(ascending=False, level='size', inplace=True)
# group by dialect and get the false positive rate
out = result_df.copy()
out.name = 'false_positive_rate'
out = out.reset_index()
out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size'])
return out
def update_darija_binary_leaderboard(result_df, model_name, BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"):
try:
with open(BINARY_LEADERBOARD_FILE, "r") as f:
data = json.load(f)
except FileNotFoundError:
data = []
# Process the results for each dialect/country
for _, row in result_df.iterrows():
country = row['dialect']
# skip 'Other' class, it is considered as the null space
if country == 'Other':
continue
# Find existing country entry or create new one
country_entry = next((item for item in data if country in item), None)
if country_entry is None:
country_entry = {country: {}}
data.append(country_entry)
# Update the model metrics directly under the model name
if country not in country_entry:
country_entry[country] = {}
country_entry[country][model_name] = float(row['false_positive_rate'])
if country_entry[country].get("n_test_samples") is None:
country_entry[country]["n_test_samples"] = int(row['size'])
# Save updated leaderboard data
with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
json.dump(data, f, indent=4)
def handle_evaluation(model_path, model_path_bin, use_mapping=False):
# run the evaluation
result_df, _ = run_eval(model_path, model_path_bin, language_mapping_dict, use_mapping=use_mapping)
# set the model name
model_name = model_path + '/' + model_path_bin
# update the leaderboard
update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE)
# update the leaderboard table
df = load_leaderboard_multilingual()
return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)
def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping=False):
"""Run evaluation on a dataset and compute metrics.
Args:
model: The model to evaluate.
DATA_PATH (str): Path to the dataset.
is_binary (bool): If True, evaluate as binary classification.
If False, evaluate as multi-class classification.
target_label (str): The target class label in binary mode.
Returns:
pd.DataFrame: A DataFrame containing evaluation metrics.
"""
# download model and get the model path
model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None)
# Load the trained model
print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...")
model = fasttext.load_model(model_path)
# Load the evaluation dataset
print(f"[INFO] Loading evaluation dataset from Path: atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced...")
eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test')
# Transform to pandas DataFrame
print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...")
df_eval = pd.DataFrame(eval_dataset)
# Predict labels using the model
print(f"[INFO] Running predictions...")
df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
# now drop the columns that are not needed, i.e. 'text'
df_eval = df_eval.drop(columns=['text', 'metadata', 'dataset_source'])
# Compute evaluation metrics
print(f"[INFO] Computing metrics...")
result_df, _ = compute_classification_metrics(df_eval)
# update_darija_multilingual_leaderboard(result_df, model_path, MULTILINGUAL_LEADERBOARD_FILE)
return result_df, df_eval
def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/"):
try:
if file is None:
return "Please upload a file."
# Clean the model name to be safe for file paths
uploaded_model_name = uploaded_model_name.strip().replace(" ", "_")
print(f"[INFO] uploaded_model_name: {uploaded_model_name}")
# Create the directory for saving submissions
path_saving = os.path.join(base_path_save, uploaded_model_name)
os.makedirs(path_saving, exist_ok=True)
# Define the full path to save the file
saved_file_path = os.path.join(path_saving, 'submission.csv')
# Read the uploaded file as DataFrame
print(f"[INFO] Loading results...")
df_eval = pd.read_csv(file.name)
# Save the DataFrame
print(f"[INFO] Saving the file locally in: {saved_file_path}")
df_eval.to_csv(saved_file_path, index=False)
except Exception as e:
return f"Error processing file: {str(e)}"
# Compute evaluation metrics
print(f"[INFO] Computing metrics...")
result_df, _ = compute_classification_metrics(df_eval)
# Update the leaderboards
update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE)
# result_df_binary = run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mapping_dict=None, use_mapping=False)
# update_darija_binary_leaderboard(result_df, uploaded_model_name, BINARY_LEADERBOARD_FILE)
# update the leaderboard table
df = load_leaderboard_multilingual()
return create_leaderboard_display_multilingual(df, 'Morocco', default_metrics)
def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
# Load leaderboard data
current_dir = os.path.dirname(os.path.abspath(__file__))
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
try:
with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
data = json.load(f)
except FileNotFoundError:
data = []
# Process the results for each dialect/country
for _, row in result_df.iterrows():
country = row['country']
# skip 'Other' class, it is considered as the null space
if country == 'Other':
continue
# Create metrics dictionary directly
metrics = {
'f1_score': float(row['f1_score']),
'precision': float(row['precision']),
'recall': float(row['recall']),
'specificity': float(row['specificity']),
'false_positive_rate': float(row['false_positive_rate']),
'false_negative_rate': float(row['false_negative_rate']),
'negative_predictive_value': float(row['negative_predictive_value']),
'n_test_samples': int(row['samples'])
}
# Find existing country entry or create new one
country_entry = next((item for item in data if country in item), None)
if country_entry is None:
country_entry = {country: {}}
data.append(country_entry)
# Update the model metrics directly under the model name
if country not in country_entry:
country_entry[country] = {}
country_entry[country][model_name] = metrics
# Save updated leaderboard data
with open(MULTILINGUAL_LEADERBOARD_FILE, "w") as f:
json.dump(data, f, indent=4)
def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
current_dir = os.path.dirname(os.path.abspath(__file__))
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
with open(MULTILINGUAL_LEADERBOARD_FILE, "r") as f:
data = json.load(f)
# Initialize lists to store the flattened data
rows = []
# Process each country's data
for country_data in data:
for country, models in country_data.items():
for model_name, metrics in models.items():
row = {
'country': country,
'model': model_name,
}
# Add all metrics to the row
row.update(metrics)
rows.append(row)
# Convert to DataFrame
df = pd.DataFrame(rows)
return df
def create_leaderboard_display_multilingual(df, selected_country, selected_metrics):
# Filter by country if specified
if selected_country and selected_country.upper() != 'ALL':
print(f"Filtering leaderboard by country: {selected_country}")
df = df[df['country'] == selected_country]
df = df.drop(columns=['country'])
# Select only the chosen metrics (plus 'model' column)
columns_to_show = ['model'] + [metric for metric in selected_metrics if metric in df.columns]
else:
# Select all metrics (plus 'country' and 'model' columns), if no country is selected or 'All' is selected for ease of comparison
columns_to_show = ['model', 'country'] + selected_metrics
# Sort by first selected metric by default
if selected_metrics:
df = df.sort_values(by=selected_metrics[0], ascending=False)
df = df[columns_to_show]
# Format numeric columns to 4 decimal places
numeric_cols = df.select_dtypes(include=['float64']).columns
df[numeric_cols] = df[numeric_cols].round(4)
return df
def update_leaderboard_multilingual(country, selected_metrics):
if not selected_metrics: # If no metrics selected, show all
selected_metrics = metrics
df = load_leaderboard_multilingual()
display_df = create_leaderboard_display_multilingual(df, country, selected_metrics)
return display_df
def encode_image_to_base64(image_path):
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return encoded_string
def create_html_image(image_path):
# Get base64 string of image
img_base64 = encode_image_to_base64(image_path)
# Create HTML string with embedded image and centering styles
html_string = f"""
<div style="display: flex; justify-content: center; align-items: center; width: 100%; text-align: center;">
<div style="max-width: 800px; margin: auto;">
<img src="data:image/jpeg;base64,{img_base64}"
style="max-width: 75%; height: auto; display: block; margin: 0 auto; margin-top: 50px;"
alt="Displayed Image">
</div>
</div>
"""
return html_string |