Update app.py
Browse files
app.py
CHANGED
@@ -3,48 +3,99 @@ import gradio as gr
|
|
3 |
import pandas as pd
|
4 |
import requests
|
5 |
import io
|
6 |
-
import dask.dataframe as dd
|
7 |
-
from datasets import load_dataset, Image
|
8 |
-
from mlcroissant import Dataset as CroissantDataset
|
9 |
-
from huggingface_hub import get_token
|
10 |
-
import polars as pl
|
11 |
import warnings
|
12 |
import traceback
|
13 |
import json
|
14 |
-
import tempfile
|
|
|
|
|
15 |
|
16 |
-
# π€«
|
17 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# --- βοΈ Configuration & Constants ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
DATASET_CONFIG = {
|
21 |
"caselaw": {
|
22 |
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
|
23 |
-
"methods":
|
24 |
},
|
25 |
"prompts": {
|
26 |
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
|
27 |
-
"methods":
|
28 |
},
|
29 |
"finance": {
|
30 |
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
|
31 |
-
"methods":
|
32 |
},
|
33 |
"medical": {
|
34 |
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
|
35 |
-
"methods":
|
36 |
},
|
37 |
"inscene": {
|
38 |
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
|
39 |
-
"methods":
|
40 |
},
|
41 |
}
|
42 |
|
43 |
# --- π§ Helpers & Utility Functions ---
|
44 |
|
45 |
def get_auth_headers():
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
|
50 |
def dataframe_to_outputs(df: pd.DataFrame):
|
@@ -261,8 +312,24 @@ def fetch_data(dataset_key: str, access_method: str, query: str):
|
|
261 |
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
|
262 |
|
263 |
if dataset_key == 'inscene':
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
yield tuple(outputs)
|
267 |
|
268 |
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
|
@@ -289,10 +356,14 @@ def fetch_data(dataset_key: str, access_method: str, query: str):
|
|
289 |
df = pd.read_json(f"{file_path}medical_o1_sft.json")
|
290 |
|
291 |
elif "Datasets" in access_method:
|
|
|
|
|
292 |
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
|
293 |
df = pd.DataFrame(ds)
|
294 |
|
295 |
elif "Polars" in access_method:
|
|
|
|
|
296 |
outputs[2] = "β³ Loading with Polars..."
|
297 |
yield tuple(outputs)
|
298 |
if repo_id == "fka/awesome-chatgpt-prompts":
|
@@ -302,22 +373,50 @@ def fetch_data(dataset_key: str, access_method: str, query: str):
|
|
302 |
df = pl_df.to_pandas()
|
303 |
|
304 |
elif "Dask" in access_method:
|
|
|
|
|
305 |
outputs[2] = "β³ Loading with Dask..."
|
306 |
yield tuple(outputs)
|
307 |
dask_df = dd.read_json(f"hf://datasets/{repo_id}/**/*.jsonl.gz")
|
308 |
df = dask_df.head(1000) # Convert to pandas for processing
|
309 |
|
310 |
elif "Croissant" in access_method:
|
|
|
|
|
311 |
outputs[2] = "β³ Loading with Croissant..."
|
312 |
yield tuple(outputs)
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
outputs[2] = "π Searching loaded data..."
|
323 |
yield tuple(outputs)
|
@@ -329,8 +428,24 @@ def fetch_data(dataset_key: str, access_method: str, query: str):
|
|
329 |
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
|
330 |
|
331 |
if dataset_key == 'inscene' and not final_df.empty:
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
yield tuple(outputs)
|
336 |
|
@@ -347,9 +462,21 @@ def create_dataset_tab(dataset_key: str):
|
|
347 |
if not config['is_public']:
|
348 |
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
|
349 |
|
|
|
|
|
|
|
|
|
|
|
350 |
with gr.Row():
|
351 |
-
access_method = gr.Radio(
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
fetch_button = gr.Button("π Go Fetch!")
|
355 |
status_output = gr.Markdown("π Ready to search.")
|
@@ -385,7 +512,20 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as
|
|
385 |
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
|
386 |
)
|
387 |
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
gr.Markdown("""
|
390 |
### π Quick Start:
|
391 |
1. **π€ Prompts Tab**: Try API method, search for "translator" or "linux"
|
@@ -402,7 +542,13 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as
|
|
402 |
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
|
403 |
- **π€ Datasets**: Good for streaming large datasets
|
404 |
- **π§ Polars/Dask**: Alternative fast data processing
|
405 |
-
- **π₯ Croissant**: Metadata-aware loading
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
""")
|
407 |
|
408 |
with gr.Tabs():
|
|
|
3 |
import pandas as pd
|
4 |
import requests
|
5 |
import io
|
|
|
|
|
|
|
|
|
|
|
6 |
import warnings
|
7 |
import traceback
|
8 |
import json
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
|
13 |
+
# π€« Suppress warnings and set logging levels
|
14 |
warnings.filterwarnings("ignore")
|
15 |
+
logging.getLogger("absl").setLevel(logging.ERROR) # Suppress MLCroissant warnings
|
16 |
+
os.environ["ABSL_LOG_LEVEL"] = "2" # Only show errors
|
17 |
+
|
18 |
+
# Import optional dependencies with fallbacks
|
19 |
+
try:
|
20 |
+
import dask.dataframe as dd
|
21 |
+
DASK_AVAILABLE = True
|
22 |
+
except ImportError:
|
23 |
+
DASK_AVAILABLE = False
|
24 |
+
|
25 |
+
try:
|
26 |
+
from datasets import load_dataset, Image
|
27 |
+
DATASETS_AVAILABLE = True
|
28 |
+
except ImportError:
|
29 |
+
DATASETS_AVAILABLE = False
|
30 |
+
|
31 |
+
try:
|
32 |
+
from mlcroissant import Dataset as CroissantDataset
|
33 |
+
CROISSANT_AVAILABLE = True
|
34 |
+
except ImportError:
|
35 |
+
CROISSANT_AVAILABLE = False
|
36 |
+
|
37 |
+
try:
|
38 |
+
from huggingface_hub import get_token
|
39 |
+
HF_HUB_AVAILABLE = True
|
40 |
+
except ImportError:
|
41 |
+
HF_HUB_AVAILABLE = False
|
42 |
+
|
43 |
+
try:
|
44 |
+
import polars as pl
|
45 |
+
POLARS_AVAILABLE = True
|
46 |
+
except ImportError:
|
47 |
+
POLARS_AVAILABLE = False
|
48 |
|
49 |
# --- βοΈ Configuration & Constants ---
|
50 |
+
def get_available_methods():
|
51 |
+
"""π§ Get available methods based on installed dependencies"""
|
52 |
+
base_methods = ["π¨ API (requests)", "πΌ Pandas"]
|
53 |
+
|
54 |
+
if DATASETS_AVAILABLE:
|
55 |
+
base_methods.append("π€ Datasets")
|
56 |
+
if POLARS_AVAILABLE:
|
57 |
+
base_methods.append("π§ Polars")
|
58 |
+
if DASK_AVAILABLE:
|
59 |
+
base_methods.append("π§ Dask")
|
60 |
+
if CROISSANT_AVAILABLE:
|
61 |
+
base_methods.append("π₯ Croissant")
|
62 |
+
|
63 |
+
return base_methods
|
64 |
+
|
65 |
DATASET_CONFIG = {
|
66 |
"caselaw": {
|
67 |
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
|
68 |
+
"methods": get_available_methods(), "is_public": True,
|
69 |
},
|
70 |
"prompts": {
|
71 |
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
|
72 |
+
"methods": get_available_methods(), "is_public": True,
|
73 |
},
|
74 |
"finance": {
|
75 |
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
|
76 |
+
"methods": get_available_methods(), "is_public": False,
|
77 |
},
|
78 |
"medical": {
|
79 |
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
|
80 |
+
"methods": get_available_methods(), "is_public": False,
|
81 |
},
|
82 |
"inscene": {
|
83 |
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
|
84 |
+
"methods": get_available_methods(), "is_public": False,
|
85 |
},
|
86 |
}
|
87 |
|
88 |
# --- π§ Helpers & Utility Functions ---
|
89 |
|
90 |
def get_auth_headers():
|
91 |
+
"""π Get authentication headers if available"""
|
92 |
+
if not HF_HUB_AVAILABLE:
|
93 |
+
return {}
|
94 |
+
try:
|
95 |
+
token = get_token()
|
96 |
+
return {"Authorization": f"Bearer {token}"} if token else {}
|
97 |
+
except Exception:
|
98 |
+
return {}
|
99 |
|
100 |
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
|
101 |
def dataframe_to_outputs(df: pd.DataFrame):
|
|
|
312 |
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
|
313 |
|
314 |
if dataset_key == 'inscene':
|
315 |
+
try:
|
316 |
+
gallery_data = []
|
317 |
+
for _, row in all_results_df.iterrows():
|
318 |
+
if 'image' in row:
|
319 |
+
image_data = row.get('image')
|
320 |
+
text_data = row.get('text', '')
|
321 |
+
|
322 |
+
# Handle different image formats safely
|
323 |
+
if hasattr(image_data, 'save'): # PIL Image
|
324 |
+
gallery_data.append((image_data, text_data))
|
325 |
+
elif isinstance(image_data, str): # Image path or URL
|
326 |
+
gallery_data.append((image_data, text_data))
|
327 |
+
|
328 |
+
if gallery_data:
|
329 |
+
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
|
330 |
+
except Exception as img_error:
|
331 |
+
# Don't break the flow for image errors
|
332 |
+
pass
|
333 |
yield tuple(outputs)
|
334 |
|
335 |
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
|
|
|
356 |
df = pd.read_json(f"{file_path}medical_o1_sft.json")
|
357 |
|
358 |
elif "Datasets" in access_method:
|
359 |
+
if not DATASETS_AVAILABLE:
|
360 |
+
raise ImportError("datasets library not available. Install with: pip install datasets")
|
361 |
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
|
362 |
df = pd.DataFrame(ds)
|
363 |
|
364 |
elif "Polars" in access_method:
|
365 |
+
if not POLARS_AVAILABLE:
|
366 |
+
raise ImportError("polars library not available. Install with: pip install polars")
|
367 |
outputs[2] = "β³ Loading with Polars..."
|
368 |
yield tuple(outputs)
|
369 |
if repo_id == "fka/awesome-chatgpt-prompts":
|
|
|
373 |
df = pl_df.to_pandas()
|
374 |
|
375 |
elif "Dask" in access_method:
|
376 |
+
if not DASK_AVAILABLE:
|
377 |
+
raise ImportError("dask library not available. Install with: pip install dask")
|
378 |
outputs[2] = "β³ Loading with Dask..."
|
379 |
yield tuple(outputs)
|
380 |
dask_df = dd.read_json(f"hf://datasets/{repo_id}/**/*.jsonl.gz")
|
381 |
df = dask_df.head(1000) # Convert to pandas for processing
|
382 |
|
383 |
elif "Croissant" in access_method:
|
384 |
+
if not CROISSANT_AVAILABLE:
|
385 |
+
raise ImportError("mlcroissant library not available. Install with: pip install mlcroissant")
|
386 |
outputs[2] = "β³ Loading with Croissant..."
|
387 |
yield tuple(outputs)
|
388 |
+
|
389 |
+
try:
|
390 |
+
headers = get_auth_headers() if not config["is_public"] else {}
|
391 |
+
croissant_url = f"https://huggingface.co/api/datasets/{repo_id}/croissant"
|
392 |
+
response = requests.get(croissant_url, headers=headers)
|
393 |
+
response.raise_for_status()
|
394 |
+
jsonld = response.json()
|
395 |
+
|
396 |
+
# Suppress MLCroissant warnings during dataset creation
|
397 |
+
with warnings.catch_warnings():
|
398 |
+
warnings.simplefilter("ignore")
|
399 |
+
ds = CroissantDataset(jsonld=jsonld)
|
400 |
+
records = list(ds.records("default"))[:1000] # Take first 1000
|
401 |
+
df = pd.DataFrame(records)
|
402 |
+
|
403 |
+
except Exception as croissant_error:
|
404 |
+
# If Croissant fails, fall back to API method
|
405 |
+
outputs[2] = f"β οΈ Croissant method failed, falling back to API method..."
|
406 |
+
yield tuple(outputs)
|
407 |
+
|
408 |
+
# Retry with API method
|
409 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset=0&length=100"
|
410 |
+
headers = get_auth_headers() if not config["is_public"] else {}
|
411 |
+
response = requests.get(url, headers=headers)
|
412 |
+
response.raise_for_status()
|
413 |
+
data = response.json()
|
414 |
+
|
415 |
+
if data.get('rows'):
|
416 |
+
rows_data = [item['row'] for item in data['rows']]
|
417 |
+
df = pd.json_normalize(rows_data)
|
418 |
+
else:
|
419 |
+
raise Exception("No data available from fallback API method")
|
420 |
|
421 |
outputs[2] = "π Searching loaded data..."
|
422 |
yield tuple(outputs)
|
|
|
428 |
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
|
429 |
|
430 |
if dataset_key == 'inscene' and not final_df.empty:
|
431 |
+
# Handle image data more safely
|
432 |
+
try:
|
433 |
+
gallery_data = []
|
434 |
+
for _, row in final_df.iterrows():
|
435 |
+
if 'image' in row:
|
436 |
+
image_data = row.get('image')
|
437 |
+
text_data = row.get('text', '')
|
438 |
+
|
439 |
+
# Handle different image formats
|
440 |
+
if hasattr(image_data, 'save'): # PIL Image
|
441 |
+
gallery_data.append((image_data, text_data))
|
442 |
+
elif isinstance(image_data, str): # Image path or URL
|
443 |
+
gallery_data.append((image_data, text_data))
|
444 |
+
|
445 |
+
if gallery_data:
|
446 |
+
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
|
447 |
+
except Exception as img_error:
|
448 |
+
outputs[2] += f"\nβ οΈ Image display error: {str(img_error)}"
|
449 |
|
450 |
yield tuple(outputs)
|
451 |
|
|
|
462 |
if not config['is_public']:
|
463 |
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
|
464 |
|
465 |
+
# Show available methods for this dataset
|
466 |
+
available_methods = config['methods']
|
467 |
+
if len(available_methods) < 5: # Some methods missing
|
468 |
+
gr.Markdown(f"**Available methods:** {len(available_methods)} of 6 possible methods")
|
469 |
+
|
470 |
with gr.Row():
|
471 |
+
access_method = gr.Radio(
|
472 |
+
available_methods,
|
473 |
+
label="π Access Method",
|
474 |
+
value=available_methods[0] if available_methods else "π¨ API (requests)"
|
475 |
+
)
|
476 |
+
query = gr.Textbox(
|
477 |
+
label="π Search Query",
|
478 |
+
placeholder="Enter any text to search, or leave blank for samples..."
|
479 |
+
)
|
480 |
|
481 |
fetch_button = gr.Button("π Go Fetch!")
|
482 |
status_output = gr.Markdown("π Ready to search.")
|
|
|
512 |
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
|
513 |
)
|
514 |
|
515 |
+
# Show dependency status
|
516 |
+
def get_dependency_status():
|
517 |
+
status = "### π§ Available Libraries:\n"
|
518 |
+
status += f"- **π¨ API**: β
Always available\n"
|
519 |
+
status += f"- **πΌ Pandas**: β
Available\n"
|
520 |
+
status += f"- **π€ Datasets**: {'β
Available' if DATASETS_AVAILABLE else 'β Not installed'}\n"
|
521 |
+
status += f"- **π§ Polars**: {'β
Available' if POLARS_AVAILABLE else 'β Not installed'}\n"
|
522 |
+
status += f"- **π§ Dask**: {'β
Available' if DASK_AVAILABLE else 'β Not installed'}\n"
|
523 |
+
status += f"- **π₯ Croissant**: {'β
Available' if CROISSANT_AVAILABLE else 'β Not installed'}\n"
|
524 |
+
status += f"- **π HF Authentication**: {'β
Available' if HF_HUB_AVAILABLE else 'β Not installed'}\n"
|
525 |
+
return status
|
526 |
+
|
527 |
+
with gr.Accordion("π§ Library Status & Quick Start Guide", open=False):
|
528 |
+
gr.Markdown(get_dependency_status())
|
529 |
gr.Markdown("""
|
530 |
### π Quick Start:
|
531 |
1. **π€ Prompts Tab**: Try API method, search for "translator" or "linux"
|
|
|
542 |
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
|
543 |
- **π€ Datasets**: Good for streaming large datasets
|
544 |
- **π§ Polars/Dask**: Alternative fast data processing
|
545 |
+
- **π₯ Croissant**: Metadata-aware loading (has fallback to API)
|
546 |
+
|
547 |
+
### π¦ Missing Libraries:
|
548 |
+
If methods are missing, install with:
|
549 |
+
```bash
|
550 |
+
pip install datasets polars dask mlcroissant GitPython
|
551 |
+
```
|
552 |
""")
|
553 |
|
554 |
with gr.Tabs():
|