awacke1's picture
Create app.py
3966f89 verified
raw
history blame
10.4 kB
#!/usr/bin/env python3
import os
import glob
import time
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from diffusers import StableDiffusionPipeline
import fitz
import requests
from PIL import Image
import logging
import asyncio
import aiofiles
from io import BytesIO
from dataclasses import dataclass
from typing import Optional
import gradio as gr
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
return self
def save_model(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
return self
def save_model(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
def generate_filename(sequence, ext="png"):
timestamp = time.strftime("%d%m%Y%H%M%S")
return f"{sequence}_{timestamp}.{ext}"
def get_gallery_files(file_types):
return sorted(list(set([f for ext in file_types for f in glob.glob(f"*.{ext}")]))) # Deduplicate files
async def process_image_gen(prompt, output_file, builder):
if builder and isinstance(builder, DiffusionBuilder) and builder.pipeline:
pipeline = builder.pipeline
else:
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
gen_image.save(output_file)
return gen_image
# Smart Uploader Functions
def upload_files(files, links_title, links_url, history, selected_files):
uploaded = {"images": [], "videos": [], "documents": [], "datasets": [], "links": []}
if files:
for file in files:
ext = file.name.split('.')[-1].lower()
output_path = f"uploaded_{int(time.time())}_{file.name}"
with open(output_path, "wb") as f:
f.write(file.read())
if ext in ["jpg", "png"]:
uploaded["images"].append(output_path)
elif ext == "mp4":
uploaded["videos"].append(output_path)
elif ext in ["md", "pdf", "docx"]:
uploaded["documents"].append(output_path)
elif ext in ["csv", "xlsx"]:
uploaded["datasets"].append(output_path)
history.append(f"Uploaded: {output_path}")
selected_files[output_path] = False # Default unchecked
if links_title and links_url:
links = list(zip(links_title.split('\n'), links_url.split('\n')))
for title, url in links:
if title and url:
link_entry = f"[{title}]({url})"
uploaded["links"].append(link_entry)
history.append(f"Added Link: {link_entry}")
selected_files[link_entry] = False
return uploaded, history, selected_files
def update_galleries(history, selected_files):
galleries = {
"images": get_gallery_files(["jpg", "png"]),
"videos": get_gallery_files(["mp4"]),
"documents": get_gallery_files(["md", "pdf", "docx"]),
"datasets": get_gallery_files(["csv", "xlsx"]),
"links": [f for f in selected_files.keys() if f.startswith('[') and '](' in f and f.endswith(')')]
}
gallery_outputs = {
"images": [(Image.open(f), os.path.basename(f)) for f in galleries["images"][:4]],
"videos": [(f, os.path.basename(f)) for f in galleries["videos"][:4]], # Video preview as file path
"documents": [(Image.frombytes("RGB", fitz.open(f)[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)).size, fitz.open(f)[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)).samples) if f.endswith('.pdf') else f, os.path.basename(f)) for f in galleries["documents"][:4]],
"datasets": [(f, os.path.basename(f)) for f in galleries["datasets"][:4]], # Text preview
"links": [(f, f.split(']')[0][1:]) for f in galleries["links"][:4]]
}
history.append(f"Updated galleries: {sum(len(g) for g in galleries.values())} files")
return gallery_outputs, history, selected_files
def toggle_selection(file_list, selected_files):
for file in file_list:
selected_files[file] = not selected_files.get(file, False)
return selected_files
def image_gen(prompt, builder, history, selected_files):
selected = [f for f, sel in selected_files.items() if sel and f.endswith(('.jpg', '.png'))]
if not selected:
return "No images selected", None, history, selected_files
output_file = generate_filename("gen_output", "png")
gen_image = asyncio.run(process_image_gen(prompt, output_file, builder))
history.append(f"Image Gen: {prompt} -> {output_file}")
selected_files[output_file] = True
return f"Image saved to {output_file}", gen_image, history, selected_files
# Gradio UI
with gr.Blocks(title="AI Vision & SFT Titans πŸš€") as demo:
gr.Markdown("# AI Vision & SFT Titans πŸš€")
history = gr.State(value=[])
builder = gr.State(value=None)
selected_files = gr.State(value={})
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## πŸ“ File Tree")
with gr.Accordion("🌳 Uploads", open=True):
with gr.Row():
gr.Markdown("### πŸ–ΌοΈ Images (jpg/png)")
img_gallery = gr.Gallery(label="Images", columns=4, height="auto")
with gr.Row():
gr.Markdown("### πŸŽ₯ Videos (mp4)")
vid_gallery = gr.Gallery(label="Videos", columns=4, height="auto")
with gr.Row():
gr.Markdown("### πŸ“œ Docs (md/pdf/docx)")
doc_gallery = gr.Gallery(label="Documents", columns=4, height="auto")
with gr.Row():
gr.Markdown("### πŸ“Š Data (csv/xlsx)")
data_gallery = gr.Gallery(label="Datasets", columns=4, height="auto")
with gr.Row():
gr.Markdown("### πŸ”— Links")
link_gallery = gr.Gallery(label="Links", columns=4, height="auto")
gr.Markdown("## πŸ“œ History")
history_output = gr.Textbox(label="Log", lines=5, interactive=False)
with gr.Column(scale=3):
with gr.Row():
gr.Markdown("## πŸ› οΈ Toolbar")
upload_btn = gr.Button("πŸ“€ Upload")
select_btn = gr.Button("βœ… Select")
gen_btn = gr.Button("🎨 Generate")
with gr.Tabs():
with gr.TabItem("πŸ“€ Smart Upload"):
file_upload = gr.File(label="Upload Files", file_count="multiple", type="binary")
links_title = gr.Textbox(label="Link Titles (one per line)", lines=3)
links_url = gr.Textbox(label="Link URLs (one per line)", lines=3)
upload_status = gr.Textbox(label="Status")
with gr.TabItem("πŸ” Operations"):
prompt = gr.Textbox(label="Image Gen Prompt", value="Generate a neon version")
op_status = gr.Textbox(label="Status")
op_output = gr.Image(label="Output")
upload_btn.click(
upload_files,
inputs=[file_upload, links_title, links_url, history, selected_files],
outputs=[upload_status, history, selected_files]
).then(
update_galleries,
inputs=[history, selected_files],
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
)
select_btn.click(
toggle_selection,
inputs=[gr.Dropdown(choices=list(selected_files.value.keys()), multiselect=True, label="Select Files"), selected_files],
outputs=[selected_files]
).then(
update_galleries,
inputs=[history, selected_files],
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
)
gen_btn.click(
image_gen,
inputs=[prompt, builder, history, selected_files],
outputs=[op_status, op_output, history, selected_files]
).then(
update_galleries,
inputs=[history, selected_files],
outputs=[img_gallery, vid_gallery, doc_gallery, data_gallery, link_gallery, history, selected_files]
)
# Update history output
demo.load(lambda h: "\n".join(h[-5:]), inputs=[history], outputs=[history_output])
demo.launch()