azharaslam's picture
Update app.py
ce3c203 verified
import os
import subprocess
import spaces
import torch
import gradio as gr
from gradio_client.client import DEFAULT_TEMP_DIR
from playwright.sync_api import sync_playwright
from threading import Thread
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from typing import List
from PIL import Image
from transformers.image_transforms import resize, to_channel_dimension_format
# Install flash-attn without CUDA build isolation
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Set the device to GPU if available, otherwise use CPU
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
)
MODEL = AutoModelForCausalLM.from_pretrained(
"HuggingFaceM4/VLM_WebSight_finetuned",
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
).to(DEVICE)
# Determine image sequence length
if MODEL.config.use_resampler:
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
image_seq_len = (
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
## Utils
def convert_to_rgb(image):
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
def custom_transform(x):
x = convert_to_rgb(x)
x = to_numpy_array(x)
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
x = PROCESSOR.image_processor.normalize(
x,
mean=PROCESSOR.image_processor.image_mean,
std=PROCESSOR.image_processor.image_std
)
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
x = torch.tensor(x)
return x
## End of Utils
# Install Playwright
def install_playwright():
try:
subprocess.run(["playwright", "install"], check=True)
print("Playwright installation successful.")
except subprocess.CalledProcessError as e:
print(f"Error during Playwright installation: {e}")
install_playwright()
IMAGE_GALLERY_PATHS = [
f"example_images/{ex_image}"
for ex_image in os.listdir(f"example_images")
]
def add_file_gallery(selected_state: gr.SelectData, gallery_list: List[str]):
return Image.open(gallery_list.root[selected_state.index].image.path)
def render_webpage(html_css_code):
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
context = browser.new_context(
user_agent=(
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0"
" Safari/537.36"
)
)
page = context.new_page()
page.set_content(html_css_code)
page.wait_for_load_state("networkidle")
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png"
_ = page.screenshot(path=output_path_screenshot, full_page=True)
context.close()
browser.close()
return Image.open(output_path_screenshot)
@spaces.GPU(duration=180)
def model_inference(image):
if image is None:
raise ValueError("`image` is None. It should be a PIL image.")
inputs = PROCESSOR.tokenizer(
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
return_tensors="pt",
add_special_tokens=False,
)
inputs["pixel_values"] = PROCESSOR.image_processor(
[image],
transform=custom_transform
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
skip_prompt=True,
)
generation_kwargs = dict(
inputs,
bad_words_ids=BAD_WORDS_IDS,
max_length=4096,
streamer=streamer,
)
thread = Thread(
target=MODEL.generate,
kwargs=generation_kwargs,
)
thread.start()
generated_text = ""
for new_text in streamer:
if "</s>" in new_text:
new_text = new_text.replace("</s>", "")
rendered_image = render_webpage(generated_text)
else:
rendered_image = None
generated_text += new_text
yield generated_text, rendered_image
generated_html = gr.Code(label="Extracted HTML", elem_id="generated_html")
rendered_html = gr.Image(label="Rendered HTML", show_download_button=False, show_share_button=False)
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo:
gr.Markdown(
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content."
)
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="pil",
label="Screenshot to extract",
visible=True,
sources=["upload", "clipboard"],
)
with gr.Group():
with gr.Row():
submit_btn = gr.Button(value="▶️ Submit", visible=True, min_width=120)
clear_btn = gr.ClearButton(
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(value="🔄 Regenerate", visible=True, min_width=120)
with gr.Column(scale=4):
rendered_html.render()
with gr.Row():
generated_html.render()
with gr.Row():
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=5,
elem_id="gallery",
show_share_button=False,
height=400,
)
gr.on(
triggers=[imagebox.upload, submit_btn.click, regenerate_btn.click],
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
regenerate_btn.click(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[imagebox],
).success(
fn=model_inference,
inputs=[imagebox],
outputs=[generated_html, rendered_html],
)
demo.load()
demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)