Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,291 Bytes
7264b3a 4d1a2ae d90ed2d 7264b3a d90ed2d 7264b3a 9a6b755 d90ed2d 7264b3a d90ed2d 86cb789 d90ed2d 7264b3a d90ed2d 7264b3a d90ed2d 7264b3a d90ed2d 9a6b755 d90ed2d 7264b3a d90ed2d 7264b3a d90ed2d 9a6b755 d90ed2d 9a6b755 c72b1c7 9a6b755 c72b1c7 9a6b755 d90ed2d 9dbc707 d3da251 9584a7d 9a6b755 9dbc707 9a6b755 7264b3a d90ed2d e6d0c97 7264b3a d90ed2d 9a6b755 d90ed2d 86cb789 b3fffcd 9a6b755 d90ed2d 86cb789 7264b3a d90ed2d 9a6b755 d90ed2d c72b1c7 d90ed2d 7264b3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn)
#
# @author: bokai xu <[email protected]>
# @date: 2024/07/13
#
import tqdm
from PIL import Image
import hashlib
import torch
import fitz
import threading
import gradio as gr
import spaces
import os
from transformers import AutoModel
from transformers import AutoTokenizer
from PIL import Image
import torch
import os
import numpy as np
import json
cache_dir = '/data/kb_cache'
os.makedirs(cache_dir, exist_ok=True)
def get_image_md5(img: Image.Image):
img_byte_array = img.tobytes()
hash_md5 = hashlib.md5()
hash_md5.update(img_byte_array)
hex_digest = hash_md5.hexdigest()
return hex_digest
def calculate_md5_from_binary(binary_data):
hash_md5 = hashlib.md5()
hash_md5.update(binary_data)
return hash_md5.hexdigest()
@spaces.GPU(duration=100)
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
global model, tokenizer
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
os.makedirs(this_cache_dir, exist_ok=True)
with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
file.write(pdf_file_binary)
dpi = 200
doc = fitz.open("pdf", pdf_file_binary)
reps_list = []
images = []
image_md5s = []
for page in progress.tqdm(doc):
# with self.lock: # because we hope one 16G gpu only process one image at the same time
pix = page.get_pixmap(dpi=dpi)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image_md5 = get_image_md5(image)
image_md5s.append(image_md5)
with torch.no_grad():
reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
reps_list.append(reps.squeeze(0).cpu().numpy())
images.append(image)
for idx in range(len(images)):
image = images[idx]
image_md5 = image_md5s[idx]
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
image.save(cache_image_path)
np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
for item in image_md5s:
f.write(item+'\n')
return knowledge_base_name
# @spaces.GPU
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
global model, tokenizer
target_cache_dir = os.path.join(cache_dir, knowledge_base)
if not os.path.exists(target_cache_dir):
return None
md5s = []
with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
for line in f:
md5s.append(line.rstrip('\n'))
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
query_with_instruction = "Represent this query for retrieving relavant document: " + query
with torch.no_grad():
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
query_md5 = hashlib.md5(query.encode()).hexdigest()
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
similarities = torch.matmul(query_rep, doc_reps_cat.T)
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
topk_values_np = topk_values.cpu().numpy()
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
similarities_np = similarities.cpu().numpy()
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
f.write(json.dumps(
{
"knowledge_base": knowledge_base,
"query": query,
"retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
}, indent=4, ensure_ascii=False
))
return images_topk
def upvote(knowledge_base, query):
global model, tokenizer
target_cache_dir = os.path.join(cache_dir, knowledge_base)
query_md5 = hashlib.md5(query.encode()).hexdigest()
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
data = json.loads(f.read())
data["user_preference"] = "upvote"
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
f.write(json.dumps(data, indent=4, ensure_ascii=False))
print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
gr.Info('Received, babe! Thank you!')
return
def downvote(knowledge_base, query):
global model, tokenizer
target_cache_dir = os.path.join(cache_dir, knowledge_base)
query_md5 = hashlib.md5(query.encode()).hexdigest()
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
data = json.loads(f.read())
data["user_preference"] = "downvote"
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
f.write(json.dumps(data, indent=4, ensure_ascii=False))
print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
gr.Info('Received, babe! Thank you!')
return
device = 'cuda'
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
model.to(device)
with gr.Blocks() as app:
gr.Markdown("# Memex: OCR-free Visual Document Embedding Model as Your Personal Librarian")
gr.Markdown("""The model only takes images as document-side inputs and produce vectors representing document pages. Memex is trained with over 200k query-visual document pairs, including textual document, visual document, arxiv figures, plots, charts, industry documents, textbooks, ebooks, and openly-available PDFs, etc. Its performance is on a par with our ablation text embedding model on text-oriented documents, and an advantages on visually-intensive documents.
Our model is capable of:
- Help you read a long visually-intensive or text-oriented PDF document and find the pages that answer your question.
- Help you build a personal library and retireve book pages from a large collection of books.
- It works like human: read and comprehend with vision and remember multimodal information in hippocampus.""")
gr.Markdown("- Our model is proudly based on MiniCPM-V series [MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6) [MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2).")
gr.Markdown("- We open-sourced our model at [RhapsodyAI/minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)")
gr.Markdown("- Currently we support PDF document with less than 50 pages, PDF over 50 pages will reach GPU time limit.")
with gr.Row():
file_input = gr.File(type="binary", label="Upload PDF")
file_result = gr.Text(label="Knowledge Base ID (remember this!)")
process_button = gr.Button("Process PDF (Don't click until PDF upload success)")
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
with gr.Row():
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)")
query_input = gr.Text(label="Your Queston")
topk_input = inputs=gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
retrieve_button = gr.Button("Step 1: Retrieve")
with gr.Row():
downvote_button = gr.Button("🤣Downvote")
upvote_button = gr.Button("🤗Upvote")
with gr.Row():
images_output = gr.Gallery(label="Step 2: Retrieved Pages")
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
app.launch()
|