Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,102 Bytes
ec573ee 2e398f7 d929725 ff50179 2e398f7 d929725 2e398f7 a0be13a 2e398f7 a0be13a 2e398f7 a0be13a 2e398f7 5ced797 2e398f7 5ced797 ff50179 3772bcf ff50179 3772bcf 2e398f7 cae15fc d70c7a8 2c91a3f 98bf373 65832d2 d929725 cae15fc d929725 cacc79f 2e398f7 2c91a3f 2e398f7 d929725 2e398f7 d929725 2e398f7 d70c7a8 2e398f7 d929725 2e398f7 2c91a3f 98bf373 2c91a3f 2e398f7 2c91a3f 2e398f7 2c91a3f 82fcc2f 2e398f7 d929725 2e398f7 55eb44f 2e398f7 2c91a3f 2e398f7 4012979 2e398f7 d929725 2e398f7 d929725 2e398f7 d929725 2e398f7 ec573ee 9f67309 964088f 2e398f7 06d2b3a 2e398f7 3b5a2be 2e398f7 06d2b3a 2e398f7 2c91a3f 2e398f7 d929725 2e398f7 2c91a3f 2e398f7 2c91a3f 2e398f7 d929725 2e398f7 f03687e 2e398f7 2c91a3f 2e398f7 2c91a3f 2e398f7 2c91a3f 2e398f7 2c91a3f 3b49787 2e398f7 964088f 9f67309 2e398f7 2c91a3f 964088f 2e398f7 d929725 2e398f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import gc
import os
import random
import gradio as gr
import cv2
import torch
import numpy as np
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from diffusers.models import ControlNetModel
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
import io
import spaces
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
import pandas as pd
import json
import requests
from io import BytesIO
from huggingface_hub import hf_hub_download, HfApi
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
"""
Process an image based on a bounding box, cropping and resizing as necessary.
Parameters:
- input_image: PIL Image object.
- bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates.
Returns:
- A processed image cropped and resized to 1024x1024 if the bounding box is valid,
or None if the bounding box does not meet the required size criteria.
"""
# Constants
target_size = 1024
# min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop
# Extract bounding box coordinates
x1, y1, x2, y2 = bbox_xyxy
bbox_w = x2 - x1
bbox_h = y2 - y1
# Calculate the area of the bounding box
bbox_area = bbox_w * bbox_h
# Start with the smallest square crop that allows bbox to be at least 20% of the crop area
crop_size = max(bbox_w, bbox_h)
initial_crop_area = crop_size * crop_size
while (bbox_area / initial_crop_area) < min_bbox_ratio:
crop_size += 10 # Gradually increase until bbox is at least 20% of the area
initial_crop_area = crop_size * crop_size
# Once the minimum condition is satisfied, try to expand the crop further
max_possible_crop_size = min(input_image.width, input_image.height)
while crop_size < max_possible_crop_size:
# Calculate a potential new area
new_crop_size = crop_size + 10
new_crop_area = new_crop_size * new_crop_size
if (bbox_area / new_crop_area) < min_bbox_ratio:
break # Stop if expanding further violates the 20% rule
crop_size = new_crop_size
# Determine the center of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate the crop coordinates centered around the bounding box
crop_x1 = max(0, center_x - crop_size // 2)
crop_y1 = max(0, center_y - crop_size // 2)
crop_x2 = min(input_image.width, crop_x1 + crop_size)
crop_y2 = min(input_image.height, crop_y1 + crop_size)
# Ensure the crop is square, adjust if it goes out of image bounds
if crop_x2 - crop_x1 != crop_y2 - crop_y1:
side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1)
crop_x2 = crop_x1 + side_length
crop_y2 = crop_y1 + side_length
# Crop the image
cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2))
# Resize the cropped image to 1024x1024
resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS)
return resized_image
def calc_emb_cropped(image, app, min_bbox_ratio=0.2):
face_image = image.copy()
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = face_info[0]
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=min_bbox_ratio)
return cropped_face_image
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
if w_bilateral:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
else:
image = np.array(image)
image = cv2.Canny(image, min_val, max_val)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 99999999)
return seed
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# Download face encoder
snapshot_download(
"fal/AuraFace-v1",
local_dir="models/auraface",
)
app = FaceAnalysis(
name="auraface",
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
root=".",
)
app.prepare(ctx_id=0, det_size=(640, 640))
# download checkpoints
print("Downloading checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/config.json", local_dir="./checkpoints")
# Download Lora weights
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/3D_avatar/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/coloringbook/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/One_line_portraits_Light/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/Stickers/pytorch_lora_weights.safetensors", local_dir=".")
device = "cuda" if torch.cuda.is_available() else "cpu"
# ckpts paths
face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
base_model_path = f'briaai/BRIA-2.3'
lora_base_path = f"./LoRAs"
resolution = 1024
# Load ControlNet models
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
torch_dtype=torch.float16)
controlnet = [controlnet_lnmks, controlnet_canny]
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"./checkpoints/image_encoder",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
image_encoder=image_encoder # For compatibility issues - needs to be there
)
pipe = pipe.to(device)
# use_native_ip_adapter = True
pipe.use_native_ip_adapter=True
pipe.load_ip_adapter_instantid(face_adapter)
clip_embeds=None
Loras_dict = {
"":"",
"One_line_portraits_Light": "An illustration of ",
"3D_avatar": "An illustration of ",
"coloringbook": "An illustration of ",
"Stickers": "An illustration of "
}
lora_names = Loras_dict.keys()
@spaces.GPU
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
# def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, progress=gr.Progress(track_tqdm=True)):
global CURRENT_LORA_NAME # Use the global variable to track LoRA
CURRENT_LORA_NAME = None
if image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
img = Image.open(image_path)
face_image_orig = img
face_image_cropped = calc_emb_cropped(face_image_orig, app)
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
if canny_scale>0.0:
# Convert PIL image to a file-like object
image_file = io.BytesIO()
face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG')
image_file.seek(0) # Move to the start of the BytesIO stream
url = "https://engine.prod.bria-api.com/v1/background/remove"
payload = {}
files = [
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
]
headers = {
'api_token': os.getenv('BRIA_RMBG_TOKEN') # Securely retrieve the token
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)
print(response.text)
response_json = json.loads(response.content.decode('utf-8'))
img = requests.get(response_json['result_url'])
processed_image = Image.open(io.BytesIO(img.content))
# Assuming `processed_image` is the RGBA image returned
if processed_image.mode == 'RGBA':
# Create a white background image
white_background = Image.new("RGB", processed_image.size, (255, 255, 255))
# Composite the RGBA image over the white background
face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB')
else:
face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
generator = torch.Generator(device=device).manual_seed(seed)
# full_prompt = prompt
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
pipe.disable_lora()
pipe.unfuse_lora()
pipe.unload_lora_weights()
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
if lora_name != "": # Load the new LoRA if specified
# pipe.enable_model_cpu_offload()
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale)
pipe.enable_lora()
# lora_prefix = Loras_dict[lora_name]
print(f"Loaded new LoRA: {lora_name}")
# Update the current LoRA name
CURRENT_LORA_NAME = lora_name
if lora_name != "":
full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
else:
full_prompt = prompt
print("Start inference...")
images = pipe(
prompt = full_prompt,
negative_prompt = default_negative_prompt,
image_embeds = face_emb,
image = [face_kps, canny_img] if canny_scale > 0.0 else face_kps,
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
# control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
ip_adapter_scale = ip_adapter_scale,
num_inference_steps = num_steps,
guidance_scale = guidance_scale,
generator = generator,
visual_prompt_embds = clip_embeds,
cross_attention_kwargs = None,
num_images_per_prompt=num_images,
).images
gc.collect()
torch.cuda.empty_cache()
columns = 1 if num_images == 1 else 2
return gr.update(value=images, columns=columns)
# return images
### Description
title = r"""
<h1>Bria-2.3 ID preservation</h1>
"""
description = r"""
<b>🤗 Gradio demo</b> for bria ID preservation.<br>
Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Enter a text prompt, as done in normal text-to-image models. It is highly recomended to describe the person in the text prompt - as a suffix, e.g., <br>
A Caucasian female with white skin, brown eyes, gray hair, and long hair.<br>
A Caucasian male with short brown hair and a beard.<br>
A male with brown skin and black short hair.<br>
A female with brown hair and glasses.<br>
3. (Optional) Choose one the given LoRA's to explore more styles and capabilities.
4. Click <b>Submit</b> to generate new images of the subject.
5. Remember to try different configurations (try to change the scales given in the advanced section)
"""
# 3. (Optional) You can upload your own style images to be used with IP-adapter
Footer = r"""
Enjoy
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
# Textbox for entering a prompt
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here, recomended to start with short description of the ID",
info="Describe what you want to generate or modify in the image. It is recomended to start with description of the ID (see examples above)."
)
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
submit = gr.Button("Submit", variant="primary")
with gr.Accordion(open=False, label="Advanced Options"):
num_steps = gr.Slider(
label="Number of diffusion steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="cfg scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=2,
step=1,
value=1,
)
ip_adapter_scale = gr.Slider(
label="ID Adapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
kps_scale = gr.Slider(
label="lnmks ControlNet scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.6,
)
canny_scale = gr.Slider(
label="canny ControlNet scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=99999999,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
# gallery = gr.Gallery(label="Generated Images")
gallery = gr.Gallery(label="Generated Images", columns=2) # Default to 2 columns
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
# inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale],
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
# outputs=[gallery]
outputs=gallery
)
gr.Markdown(Footer)
# demo.launch(server_port=7865)
demo.launch() |