yonishafir's picture
wip
d929725
raw
history blame
16.8 kB
import gc
import os
import random
import gradio as gr
import cv2
import torch
import numpy as np
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from diffusers.models import ControlNetModel
from insightface.app import FaceAnalysis
import io
import spaces
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
import pandas as pd
import json
import requests
from io import BytesIO
from huggingface_hub import hf_hub_download
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
"""
Process an image based on a bounding box, cropping and resizing as necessary.
Parameters:
- input_image: PIL Image object.
- bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates.
Returns:
- A processed image cropped and resized to 1024x1024 if the bounding box is valid,
or None if the bounding box does not meet the required size criteria.
"""
# Constants
target_size = 1024
# min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop
# Extract bounding box coordinates
x1, y1, x2, y2 = bbox_xyxy
bbox_w = x2 - x1
bbox_h = y2 - y1
# Calculate the area of the bounding box
bbox_area = bbox_w * bbox_h
# Start with the smallest square crop that allows bbox to be at least 20% of the crop area
crop_size = max(bbox_w, bbox_h)
initial_crop_area = crop_size * crop_size
while (bbox_area / initial_crop_area) < min_bbox_ratio:
crop_size += 10 # Gradually increase until bbox is at least 20% of the area
initial_crop_area = crop_size * crop_size
# Once the minimum condition is satisfied, try to expand the crop further
max_possible_crop_size = min(input_image.width, input_image.height)
while crop_size < max_possible_crop_size:
# Calculate a potential new area
new_crop_size = crop_size + 10
new_crop_area = new_crop_size * new_crop_size
if (bbox_area / new_crop_area) < min_bbox_ratio:
break # Stop if expanding further violates the 20% rule
crop_size = new_crop_size
# Determine the center of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate the crop coordinates centered around the bounding box
crop_x1 = max(0, center_x - crop_size // 2)
crop_y1 = max(0, center_y - crop_size // 2)
crop_x2 = min(input_image.width, crop_x1 + crop_size)
crop_y2 = min(input_image.height, crop_y1 + crop_size)
# Ensure the crop is square, adjust if it goes out of image bounds
if crop_x2 - crop_x1 != crop_y2 - crop_y1:
side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1)
crop_x2 = crop_x1 + side_length
crop_y2 = crop_y1 + side_length
# Crop the image
cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2))
# Resize the cropped image to 1024x1024
resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS)
return resized_image
def calc_emb_cropped(image, app):
face_image = image.copy()
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = face_info[0]
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=0.2)
return cropped_face_image
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
if w_bilateral:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
else:
image = np.array(image)
image = cv2.Canny(image, min_val, max_val)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# Global variable to track the currently loaded LoRA
CURRENT_LORA_NAME = None
# Load face detection and recognition package
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# download checkpoints
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="image_encoder/config.json", local_dir="./checkpoints")
# Download Lora weights
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/3D_illustration/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Avatar_internlm/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Characters/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Storyboards/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/ID_preservation_2.3", filename="LoRAs/Vangogh_Vanilla/pytorch_lora_weights.safetensors", local_dir="./checkpoints")
device = "cuda" if torch.cuda.is_available() else "cpu"
# ckpts paths
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/controlnet"
lora_base_path = "./checkpoints/LoRAs"
base_model_path = f'briaai/BRIA-2.3'
resolution = 1024
# Load ControlNet models
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
torch_dtype=torch.float16)
controlnet = [controlnet_lnmks, controlnet_canny]
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"./checkpoints/image_encoder",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
image_encoder=image_encoder # For compatibility issues - needs to be there
)
pipe = pipe.to(device)
# use_native_ip_adapter = True
pipe.use_native_ip_adapter=True
pipe.load_ip_adapter_instantid(face_adapter)
clip_embeds=None
Loras_dict = {
"":"",
"Vangogh_Vanilla": "bold, dramatic brush strokes, vibrant colors, swirling patterns, intense, emotionally charged paintings of",
"Avatar_internlm": "2d anime sketch avatar of",
"Storyboards": "Illustration style for storyboarding.",
"3D_illustration": "3D object illustration, abstract.",
"Characters": "gaming vector Art."
}
lora_names = Loras_dict.keys()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 99999999)
return seed
@spaces.GPU
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
global CURRENT_LORA_NAME # Use the global variable to track LoRA
if image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
img = Image.open(image_path)
face_image_orig = img
face_image_cropped = calc_emb_cropped(face_image_orig, app)
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
if canny_scale>0.0:
# Convert PIL image to a file-like object
image_file = io.BytesIO()
face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG')
image_file.seek(0) # Move to the start of the BytesIO stream
url = "https://engine.prod.bria-api.com/v1/background/remove"
payload = {}
files = [
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
]
headers = {
'api_token': 'a10d6386dd6a11ebba800242ac130004'
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)
print(response.text)
response_json = json.loads(response.content.decode('utf-8'))
img = requests.get(response_json['result_url'])
processed_image = Image.open(io.BytesIO(img.content))
# Assuming `processed_image` is the RGBA image returned
if processed_image.mode == 'RGBA':
# Create a white background image
white_background = Image.new("RGB", processed_image.size, (255, 255, 255))
# Composite the RGBA image over the white background
face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB')
else:
face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
generator = torch.Generator(device=device).manual_seed(seed)
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
pipe.disable_lora()
pipe.unfuse_lora()
pipe.unload_lora_weights()
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
if lora_name != "": # Load the new LoRA if specified
# pipe.enable_model_cpu_offload()
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale)
pipe.enable_lora()
# lora_prefix = Loras_dict[lora_name]
print(f"Loaded new LoRA: {lora_name}")
# Update the current LoRA name
CURRENT_LORA_NAME = lora_name
if lora_name != "":
full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
else:
full_prompt = prompt
print("Start inference...")
images = pipe(
prompt = full_prompt,
negative_prompt = default_negative_prompt,
image_embeds = face_emb,
image = [face_kps, canny_img] if canny_scale > 0.0 else face_kps,
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
# control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
ip_adapter_scale = ip_adapter_scale,
num_inference_steps = num_steps,
guidance_scale = guidance_scale,
generator = generator,
visual_prompt_embds = clip_embeds,
cross_attention_kwargs = None,
num_images_per_prompt=num_images,
).images
gc.collect()
torch.cuda.empty_cache()
return images
### Description
title = r"""
<h1>Bria-2.3 ID preservation</h1>
"""
description = r"""
<b>🤗 Gradio demo</b> for bria ID preservation.<br>
Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Click <b>Submit</b> to generate new images of the subject.
"""
Footer = r"""
Enjoy
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
# Textbox for entering a prompt
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here",
info="Describe what you want to generate or modify in the image."
)
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
submit = gr.Button("Submit", variant="primary")
with gr.Accordion(open=False, label="Advanced Options"):
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=2,
step=1,
value=1,
)
ip_adapter_scale = gr.Slider(
label="ip adapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
kps_scale = gr.Slider(
label="kps control scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.6,
)
canny_scale = gr.Slider(
label="canny control scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
)
lora_scale = gr.Slider(
label="lora_scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=99999999,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
outputs=[gallery]
)
gr.Markdown(Footer)
# demo.launch(server_port=7865)
demo.launch()