yonishafir's picture
Update app.py
98bf373 verified
import gc
import os
import random
import gradio as gr
import cv2
import torch
import numpy as np
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from diffusers.models import ControlNetModel
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
import io
import spaces
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
import pandas as pd
import json
import requests
from io import BytesIO
from huggingface_hub import hf_hub_download, HfApi
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def process_image_by_bbox_larger(input_image, bbox_xyxy, min_bbox_ratio=0.2):
"""
Process an image based on a bounding box, cropping and resizing as necessary.
Parameters:
- input_image: PIL Image object.
- bbox_xyxy: Tuple (x1, y1, x2, y2) representing the bounding box coordinates.
Returns:
- A processed image cropped and resized to 1024x1024 if the bounding box is valid,
or None if the bounding box does not meet the required size criteria.
"""
# Constants
target_size = 1024
# min_bbox_ratio = 0.2 # Bounding box should be at least 20% of the crop
# Extract bounding box coordinates
x1, y1, x2, y2 = bbox_xyxy
bbox_w = x2 - x1
bbox_h = y2 - y1
# Calculate the area of the bounding box
bbox_area = bbox_w * bbox_h
# Start with the smallest square crop that allows bbox to be at least 20% of the crop area
crop_size = max(bbox_w, bbox_h)
initial_crop_area = crop_size * crop_size
while (bbox_area / initial_crop_area) < min_bbox_ratio:
crop_size += 10 # Gradually increase until bbox is at least 20% of the area
initial_crop_area = crop_size * crop_size
# Once the minimum condition is satisfied, try to expand the crop further
max_possible_crop_size = min(input_image.width, input_image.height)
while crop_size < max_possible_crop_size:
# Calculate a potential new area
new_crop_size = crop_size + 10
new_crop_area = new_crop_size * new_crop_size
if (bbox_area / new_crop_area) < min_bbox_ratio:
break # Stop if expanding further violates the 20% rule
crop_size = new_crop_size
# Determine the center of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate the crop coordinates centered around the bounding box
crop_x1 = max(0, center_x - crop_size // 2)
crop_y1 = max(0, center_y - crop_size // 2)
crop_x2 = min(input_image.width, crop_x1 + crop_size)
crop_y2 = min(input_image.height, crop_y1 + crop_size)
# Ensure the crop is square, adjust if it goes out of image bounds
if crop_x2 - crop_x1 != crop_y2 - crop_y1:
side_length = min(crop_x2 - crop_x1, crop_y2 - crop_y1)
crop_x2 = crop_x1 + side_length
crop_y2 = crop_y1 + side_length
# Crop the image
cropped_image = input_image.crop((crop_x1, crop_y1, crop_x2, crop_y2))
# Resize the cropped image to 1024x1024
resized_image = cropped_image.resize((target_size, target_size), Image.LANCZOS)
return resized_image
def calc_emb_cropped(image, app, min_bbox_ratio=0.2):
face_image = image.copy()
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = face_info[0]
cropped_face_image = process_image_by_bbox_larger(face_image, face_info["bbox"], min_bbox_ratio=min_bbox_ratio)
return cropped_face_image
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
if w_bilateral:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
else:
image = np.array(image)
image = cv2.Canny(image, min_val, max_val)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 99999999)
return seed
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
# Download face encoder
snapshot_download(
"fal/AuraFace-v1",
local_dir="models/auraface",
)
app = FaceAnalysis(
name="auraface",
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
root=".",
)
app.prepare(ctx_id=0, det_size=(640, 640))
# download checkpoints
print("Downloading checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/config.json", local_dir="./checkpoints")
# Download Lora weights
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/3D_avatar/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/coloringbook/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/One_line_portraits_Light/pytorch_lora_weights.safetensors", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="LoRAs/Stickers/pytorch_lora_weights.safetensors", local_dir=".")
device = "cuda" if torch.cuda.is_available() else "cpu"
# ckpts paths
face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
base_model_path = f'briaai/BRIA-2.3'
lora_base_path = f"./LoRAs"
resolution = 1024
# Load ControlNet models
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
torch_dtype=torch.float16)
controlnet = [controlnet_lnmks, controlnet_canny]
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"./checkpoints/image_encoder",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
image_encoder=image_encoder # For compatibility issues - needs to be there
)
pipe = pipe.to(device)
# use_native_ip_adapter = True
pipe.use_native_ip_adapter=True
pipe.load_ip_adapter_instantid(face_adapter)
clip_embeds=None
Loras_dict = {
"":"",
"One_line_portraits_Light": "An illustration of ",
"3D_avatar": "An illustration of ",
"coloringbook": "An illustration of ",
"Stickers": "An illustration of "
}
lora_names = Loras_dict.keys()
@spaces.GPU
def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale, progress=gr.Progress(track_tqdm=True)):
# def generate_image(image_path, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, progress=gr.Progress(track_tqdm=True)):
global CURRENT_LORA_NAME # Use the global variable to track LoRA
CURRENT_LORA_NAME = None
if image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
img = Image.open(image_path)
face_image_orig = img
face_image_cropped = calc_emb_cropped(face_image_orig, app)
face_image = resize_img(face_image_cropped, max_side=resolution, min_side=resolution)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
if canny_scale>0.0:
# Convert PIL image to a file-like object
image_file = io.BytesIO()
face_image_cropped.save(image_file, format='JPEG') # Save in the desired format (e.g., 'JPEG' or 'PNG')
image_file.seek(0) # Move to the start of the BytesIO stream
url = "https://engine.prod.bria-api.com/v1/background/remove"
payload = {}
files = [
('file', ('image_name.jpeg', image_file, 'image/jpeg')) # Specify file name, file-like object, and MIME type
]
headers = {
'api_token': os.getenv('BRIA_RMBG_TOKEN') # Securely retrieve the token
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)
print(response.text)
response_json = json.loads(response.content.decode('utf-8'))
img = requests.get(response_json['result_url'])
processed_image = Image.open(io.BytesIO(img.content))
# Assuming `processed_image` is the RGBA image returned
if processed_image.mode == 'RGBA':
# Create a white background image
white_background = Image.new("RGB", processed_image.size, (255, 255, 255))
# Composite the RGBA image over the white background
face_image = Image.alpha_composite(white_background.convert('RGBA'), processed_image).convert('RGB')
else:
face_image = processed_image.convert('RGB') # If already RGB, just ensure mode is correct
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
generator = torch.Generator(device=device).manual_seed(seed)
# full_prompt = prompt
if lora_name != CURRENT_LORA_NAME: # Check if LoRA needs to be changed
if CURRENT_LORA_NAME is not None: # If a LoRA is already loaded, unload it
pipe.disable_lora()
pipe.unfuse_lora()
pipe.unload_lora_weights()
print(f"Unloaded LoRA: {CURRENT_LORA_NAME}")
if lora_name != "": # Load the new LoRA if specified
# pipe.enable_model_cpu_offload()
lora_path = os.path.join(lora_base_path, lora_name, "pytorch_lora_weights.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale)
pipe.enable_lora()
# lora_prefix = Loras_dict[lora_name]
print(f"Loaded new LoRA: {lora_name}")
# Update the current LoRA name
CURRENT_LORA_NAME = lora_name
if lora_name != "":
full_prompt = f"{Loras_dict[lora_name]} + " " + {prompt}"
else:
full_prompt = prompt
print("Start inference...")
images = pipe(
prompt = full_prompt,
negative_prompt = default_negative_prompt,
image_embeds = face_emb,
image = [face_kps, canny_img] if canny_scale > 0.0 else face_kps,
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
# control_guidance_end = [1.0, 1.0] if canny_scale>0.0 else 1.0,
ip_adapter_scale = ip_adapter_scale,
num_inference_steps = num_steps,
guidance_scale = guidance_scale,
generator = generator,
visual_prompt_embds = clip_embeds,
cross_attention_kwargs = None,
num_images_per_prompt=num_images,
).images
gc.collect()
torch.cuda.empty_cache()
columns = 1 if num_images == 1 else 2
return gr.update(value=images, columns=columns)
# return images
### Description
title = r"""
<h1>Bria-2.3 ID preservation</h1>
"""
description = r"""
<b>🤗 Gradio demo</b> for bria ID preservation.<br>
Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Enter a text prompt, as done in normal text-to-image models. It is highly recomended to describe the person in the text prompt - as a suffix, e.g., <br>
A Caucasian female with white skin, brown eyes, gray hair, and long hair.<br>
A Caucasian male with short brown hair and a beard.<br>
A male with brown skin and black short hair.<br>
A female with brown hair and glasses.<br>
3. (Optional) Choose one the given LoRA's to explore more styles and capabilities.
4. Click <b>Submit</b> to generate new images of the subject.
5. Remember to try different configurations (try to change the scales given in the advanced section)
"""
# 3. (Optional) You can upload your own style images to be used with IP-adapter
Footer = r"""
Enjoy
"""
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
# Textbox for entering a prompt
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here, recomended to start with short description of the ID",
info="Describe what you want to generate or modify in the image. It is recomended to start with description of the ID (see examples above)."
)
lora_name = gr.Dropdown(choices=lora_names, label="LoRA", value="", info="Select a LoRA name from the list, not selecting any will disable LoRA.")
submit = gr.Button("Submit", variant="primary")
with gr.Accordion(open=False, label="Advanced Options"):
num_steps = gr.Slider(
label="Number of diffusion steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="cfg scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
num_images = gr.Slider(
label="Number of output images",
minimum=1,
maximum=2,
step=1,
value=1,
)
ip_adapter_scale = gr.Slider(
label="ID Adapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
kps_scale = gr.Slider(
label="lnmks ControlNet scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.6,
)
canny_scale = gr.Slider(
label="canny ControlNet scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=99999999,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
# gallery = gr.Gallery(label="Generated Images")
gallery = gr.Gallery(label="Generated Images", columns=2) # Default to 2 columns
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
# inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale],
inputs=[img_file, prompt, num_steps, guidance_scale, seed, num_images, ip_adapter_scale, kps_scale, canny_scale, lora_name, lora_scale],
# outputs=[gallery]
outputs=gallery
)
gr.Markdown(Footer)
# demo.launch(server_port=7865)
demo.launch()