File size: 17,450 Bytes
5292944
 
 
 
 
 
 
e39eb6b
 
 
 
 
5292944
 
 
ce69398
8869d68
e39eb6b
 
5292944
7dc0a68
e39eb6b
5292944
 
7dc0a68
 
 
5292944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b98b6
 
 
5292944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2b17c
5292944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378169c
b7b98b6
 
 
 
 
 
 
 
5292944
378169c
5292944
378169c
 
 
 
 
 
 
 
 
 
 
 
 
 
5292944
378169c
b7b98b6
 
 
 
 
 
 
 
 
 
5292944
 
378169c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39eb6b
378169c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39eb6b
 
378169c
5292944
 
 
 
378169c
5292944
 
 
 
378169c
 
 
 
 
 
 
 
 
 
 
 
e39eb6b
 
 
 
b7b98b6
 
 
 
 
 
 
 
 
 
 
e39eb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b98b6
 
 
 
 
 
 
 
 
 
 
 
 
e39eb6b
 
5292944
e39eb6b
 
8869d68
5292944
 
 
e39eb6b
5292944
827c148
b7b98b6
 
 
 
 
 
 
 
 
 
 
 
238c27d
b7b98b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc0a68
5292944
7dc0a68
 
827c148
b7b98b6
e39eb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b98b6
 
 
 
 
e39eb6b
 
 
26f1b8c
e39eb6b
 
b7b98b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d8a00
36a3a51
b7b98b6
 
 
 
 
 
 
e39eb6b
bcadddb
 
 
 
 
e39eb6b
b7b98b6
ce69398
8869d68
b7b98b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721c2e
 
36a3a51
1721c2e
238c27d
1721c2e
 
36a3a51
1721c2e
 
 
 
 
3fe636f
3df1374
 
 
 
1721c2e
b7b98b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import json
import sys
from pathlib import Path
from typing import List
from urllib.request import pathname2url
from xml.dom import minidom

from folium.plugins import BeautifyIcon
from folium.features import DivIcon

# import folium.plugins as plugins

import numpy as np
import pandas as pd
from scipy.signal import find_peaks
import streamlit as st

import folium
from streamlit_folium import st_folium
import altair as alt
from io import StringIO
import branca


def get_gpx(uploaded_file):
    data = StringIO(uploaded_file.getvalue().decode("utf-8"))

    xmldoc = minidom.parse(data)
    track = xmldoc.getElementsByTagName("trkpt")
    elevation = xmldoc.getElementsByTagName("ele")
    n_track = len(track)

    # Parsing GPX elements
    lon_list = []
    lat_list = []
    h_list = []
    for s in range(n_track):
        lon, lat = (
            track[s].attributes["lon"].value,
            track[s].attributes["lat"].value,
        )
        elev = elevation[s].firstChild.nodeValue
        lon_list.append(float(lon))
        lat_list.append(float(lat))
        h_list.append(float(elev))

    # Calculate average latitude and longitude
    ave_lat = sum(lat_list) / len(lat_list)
    ave_lon = sum(lon_list) / len(lon_list)

    return ave_lat, ave_lon, lon_list, lat_list, h_list


# From https://tomaugspurger.net/posts/modern-4-performance/
def gcd_vec(lat1, lng1, lat2, lng2):
    """
    Calculate great circle distance.
    http://www.johndcook.com/blog/python_longitude_latitude/

    Parameters
    ----------
    lat1, lng1, lat2, lng2: float or array of float

    Returns
    -------
    distance:
      distance from ``(lat1, lng1)`` to ``(lat2, lng2)`` in kilometers.
    """
    # python2 users will have to use ascii identifiers
    ϕ1 = np.deg2rad(90 - lat1)
    ϕ2 = np.deg2rad(90 - lat2)

    θ1 = np.deg2rad(lng1)
    θ2 = np.deg2rad(lng2)

    cos = np.sin(ϕ1) * np.sin(ϕ2) * np.cos(θ1 - θ2) + np.cos(ϕ1) * np.cos(ϕ2)
    arc = np.arccos(cos)
    return arc * 6373


CATEGORY_TO_COLOR = {
    5: "#68bd44",
    4: "#68bd44",
    3: "#fbaa1c",
    2: "#f15822",
    1: "#ed2125",
    0: "#800000",
}


def climb_category(climb_score):
    """Determine category of the climb based on the climb score as defined by Garmin"""
    if climb_score < 1_500:
        return 5  # Not categorised
    elif climb_score < 8_000:
        return 4
    elif climb_score < 16_000:
        return 3
    elif climb_score < 32000:
        return 2
    elif climb_score < 64000:
        return 1
    else:
        return 0  # Hors categorie


def grade_to_color(grade):
    """Determine the color of the climb based on its grade according to Garmin"""
    if grade < 3:
        return "lightgrey"
    elif grade < 6:
        return CATEGORY_TO_COLOR[3]
    elif grade < 9:
        return CATEGORY_TO_COLOR[2]
    elif grade < 12:
        return CATEGORY_TO_COLOR[1]
    else:
        return CATEGORY_TO_COLOR[0]


def find_climbs(df: pd.DataFrame) -> pd.DataFrame:
    """Detect all valleys and peaks. Filter out climbs and
    add meta data (lenght, meters climbed, average grade, climb_score, ...)
    """
    peaks, _ = find_peaks(df["smoothed_elevation"])
    df_peaks = df.iloc[peaks, :].assign(base=0).assign(kind="peak")
    valleys, _ = find_peaks(df["smoothed_elevation"].max() - df["smoothed_elevation"])
    df_valleys = df.iloc[valleys, :].assign(base=0).assign(kind="valley")
    df_elevation = pd.concat([df_valleys, df_peaks], axis=0).sort_values(
        by="distance_from_start"
    )

    # Climbscore acoording to Garmin:
    # https://s3.eu-central-1.amazonaws.com/download.navigation-professionell.de/
    # Garmin/Manuals/Understanding+ClimbPro+on+the+Edge.pdf

    df_peaks_filtered = (
        pd.concat(
            [df_elevation, df_elevation.shift(1).bfill().add_prefix("prev_")],
            axis=1,
        )
        .query("(kind=='peak') & (prev_kind=='valley')")
        .assign(
            length=lambda df_: df_["distance_from_start"]
            - df_["prev_distance_from_start"]
        )
        .assign(total_ascent=lambda df_: df_["elev"] - df_["prev_elev"])
        .assign(grade=lambda df_: (df_["total_ascent"] / df_["length"]) * 100)
        .assign(climb_score=lambda df_: df_["length"] * df_["grade"])
        .assign(hill_category=lambda df_: df_["climb_score"].map(climb_category))
        .query("climb_score >= 1_500")
        .assign(max_elevation=df["elev"].max().round(-1) + 10)
    )
    # Garmin rules
    # df_peaks_filtered = df_peaks_meta.query(
    #   "(climb_score >= 1_500) & (length >= 0.5) & (grade >= 3_000)"
    # )
    return df_peaks_filtered


def generate_height_profile_json(df: pd.DataFrame) -> str:
    """Generate a height profile of the ride in Altair.
    Returns a string with json.
    """
    df_distance = (
        df.assign(lon_1=lambda df_: df["lon"].shift(1))
        .assign(lat_1=lambda df_: df["lat"].shift(1))
        .drop(columns=["elev"])
    )[["lat", "lon", "lat_1", "lon_1"]]
    df["distance"] = pd.Series(
        [gcd_vec(*x) for x in df_distance.itertuples(index=False)],
        index=df_distance.index,
    ).fillna(0)
    total_distance = df["distance"].sum()
    total_distance_round = np.round(total_distance)
    df["distance_from_start"] = df["distance"].cumsum()
    df["smoothed_elevation"] = df["elev"].rolling(10).mean().bfill()
    df["grade"] = (
        0.1
        * (df["elev"] - df["elev"].shift(1).bfill())
        / (df["distance_from_start"] - df["distance_from_start"].shift(1).bfill())
    )
    df["smoothed_grade"] = df["grade"].rolling(10).mean()
    df["smoothed_grade"] = df["smoothed_grade"].bfill()
    df["smoothed_grade_color"] = df["smoothed_grade"].map(grade_to_color)
    # df["grade_color"] = df["grade"].map(grade_to_color)

    elevation = (
        alt.Chart(
            df[
                [
                    "distance_from_start",
                    "smoothed_elevation",
                    "smoothed_grade_color",
                    "grade",
                ]
            ]
        )
        .mark_bar()
        .encode(
            x=alt.X("distance_from_start")
            .axis(
                grid=False,
                tickCount=10,
                labelExpr="datum.label + ' km'",
                title=None,
            )
            .scale(domain=(0, total_distance_round)),
            y=alt.Y("smoothed_elevation").axis(
                domain=False,
                ticks=False,
                tickCount=5,
                labelExpr="datum.label + ' m'",
                title=None,
            ),
            color=alt.Color("smoothed_grade_color").scale(None),
            tooltip=[
                alt.Tooltip(
                    "distance_from_start:Q", title="Distance (km)", format=".2f"
                ),
                alt.Tooltip("smoothed_elevation:Q", title="Elevation (m)", format="d"),
                alt.Tooltip("grade_percent:Q", title="Grade (%)", format=".0%"),
            ],
        )
        .transform_calculate(
            grade_percent="datum.grade/100",
        )
    )
    max_elevation = df["elev"].max().round(-1)
    # elevation = (
    #     alt.Chart(df)
    #     .mark_area(
    #         color=alt.Gradient(
    #             gradient="linear",
    #             stops=[
    #                 alt.GradientStop(color="lightgrey", offset=0),
    #                 alt.GradientStop(color="darkgrey", offset=1),
    #             ],
    #             x1=1,
    #             x2=1,
    #             y1=1,
    #             y2=0,
    #         ),
    #         line={"color": "darkgreen"},
    #     )
    #     .encode(
    #         x=alt.X(
    #             "distance_from_start",
    #             axis=alt.Axis(
    #                 domain=False,
    #                 ticks=False,
    #                 tickCount=10,
    #                 labelExpr="datum.label + ' km'",
    #             ),
    #             scale=alt.Scale(domain=(0, total_distance_round)),
    #         ),
    #         y=alt.Y(
    #             "elev",
    #             axis=alt.Axis(
    #                 domain=False,
    #                 ticks=False,
    #                 tickCount=5,
    #                 labelExpr="datum.label + ' m'",
    #             ),
    #             scale=alt.Scale(domain=(0, max_elevation)),
    #         ),
    #     )
    # )
    df_peaks_filtered = find_climbs(df)
    line_peaks = (
        alt.Chart(df_peaks_filtered[["distance_from_start", "elev", "max_elevation"]])
        .mark_rule(color="red")
        .encode(
            x=alt.X("distance_from_start:Q").scale(domain=(0, total_distance_round)),
            y="elev",
            y2="max_elevation",
        )
    )
    # line_peaks = (
    #     alt.Chart(df_peaks_filtered[["distance_from_start", "elev", "max_elevation"]])
    #     .mark_rule(color="red")
    #     .encode(
    #         x=alt.X(
    #             "distance_from_start:Q",
    #             scale=alt.Scale(domain=(0, total_distance_round)),
    #         ),
    #         y="elev",
    #         y2="max_elevation",
    #     )
    # )
    df_annot = (
        df_peaks_filtered.reset_index(drop=True)
        .assign(number=lambda df_: df_.index + 1)
        .assign(circle_pos=lambda df_: df_["max_elevation"] + 20)[
            [
                "distance_from_start",
                "max_elevation",
                "circle_pos",
                "number",
                "length",
                "total_ascent",
                "grade",
                "climb_score",
                "prev_distance_from_start",
            ]
        ]
    )
    # annotation = (
    #     alt.Chart(df_annot)
    #     .mark_text(align="center", baseline="bottom", fontSize=16, dy=-10)
    #     .encode(
    #         x=alt.X("distance_from_start:Q").scale(domain=(0, total_distance_round)),
    #         y="max_elevation",
    #         text="number",
    #     )
    # )
    annotation = (
        alt.Chart(df_annot)
        .mark_text(align="center", baseline="bottom", fontSize=16, dy=-10)
        .encode(
            x=alt.X(
                "distance_from_start:Q",
                scale=alt.Scale(domain=(0, total_distance_round)),
            ),
            y="max_elevation",
            text="number",
            tooltip=[
                alt.Tooltip(
                    "prev_distance_from_start:Q", title="Starts at (km)", format=".2f"
                ),
                alt.Tooltip("total_ascent:Q", title="Total ascent (m)", format="d"),
                alt.Tooltip("length:Q", title="Length (km)", format=".2f"),
                alt.Tooltip("grade_percent:Q", title="Average Grade", format=".0%"),
                alt.Tooltip("climb_score:Q", title="Climb score", format="d"),
            ],
        )
        .transform_calculate(
            grade_percent="datum.grade/(100*1000)",
            # total_ascent_int="Math.round(datum.total_ascent)",
        )
    )
    chart = (
        (elevation + line_peaks + annotation)
        .properties(width="container")
        .configure_view(
            strokeWidth=0,
        )
    )
    return chart, df_peaks_filtered


def generate_climb_profile(df_hill: pd.DataFrame, title: str):
    climb_profile = (
        alt.Chart(
            df_hill,
            title=alt.Title(
                title,
                anchor="start",
            ),
        )
        .mark_area()
        .encode(
            x=alt.X("distance_from_start")
            .axis(grid=False, tickCount=10, labelExpr="datum.label + ' m'", title=None)
            .scale(domain=(0, df_hill["distance_from_start"].max())),
            y=alt.Y("elev").axis(
                domain=False,
                ticks=False,
                tickCount=5,
                labelExpr="datum.label + ' m'",
                title=None,
            ),
            color=alt.Color("color_grade").scale(None),
            tooltip=[
                alt.Tooltip("distance_from_start:Q", title="Distance (m)", format="d"),
                alt.Tooltip("elev:Q", title="Elevation (m)", format="d"),
                alt.Tooltip("grade_percent:Q", title="Grade (%)", format=".0%"),
            ],
        )
        .transform_calculate(
            grade_percent="datum.grade/100",
        )
    )
    return climb_profile


gpx_file = st.file_uploader("Upload gpx file", type=["gpx"])

if gpx_file is not None:
    ave_lat, ave_lon, lon_list, lat_list, h_list = get_gpx(gpx_file)
    df = pd.DataFrame({"lon": lon_list, "lat": lat_list, "elev": h_list})
    route_map = folium.Map(location=[ave_lat, ave_lon], zoom_start=12, height=400)
    folium.PolyLine(
        list(zip(lat_list, lon_list)), color="red", weight=2.5, opacity=1
    ).add_to(route_map)

    chart, df_peaks = generate_height_profile_json(df)
    for index, row in df_peaks.reset_index(drop=True).iterrows():
        icon = BeautifyIcon(
            icon="arrow-down",
            icon_shape="marker",
            number=str(index + 1),
            border_color="red",
            background_color="white",
        )
        icon_div = DivIcon(
            icon_size=(150, 36),
            icon_anchor=(7, 20),
            html=f"<div style='font-size: 18pt; color : black'>{index+1}</div>",
        )
        length = (
            f"{row['length']:.1f} km"
            if row["length"] >= 1
            else f"{row['length']*1000:.0f} m"
        )
        popup_text = f"""Climb {index+1}<br>
                Lenght: {length}<br>
                Avg. grade: {row['grade']/1000:.1f}%<br>
                Total ascend: {int(row['total_ascent'])}m
        """
        popup = folium.Popup(popup_text, min_width=100, max_width=200)
        folium.Marker(
            [row["lat"], row["lon"]],
            popup=popup,
            icon=icon_div,
        ).add_to(route_map)

        df_hill = (
            df[
                df["distance_from_start"].between(
                    row["prev_distance_from_start"],
                    row["distance_from_start"],
                )
            ]
            .assign(
                distance_from_start=lambda df_: (
                    df_["distance_from_start"] - row["prev_distance_from_start"]
                )
                * 1_000
            )
            .assign(color_grade=lambda df_: df_["grade"].map(grade_to_color))
        )
        # df_hill_resample = df_hill.groupby((df_hill["distance_from_start"]*1000).round(-2)).agg({"elev":"mean", "grade":"mean"}).reset_index()
        # df_hill_resample["color_grade"] = df_resampled["grade"].map(grade_to_color)
        title = f"Climb {index+1}: {row['length']:.2f}km {(row['grade']/100_000):.2%} {int(row['total_ascent']):d}hm"
        climb_profile = generate_climb_profile(df_hill, title)
        climb_profile_json = json.loads(climb_profile.to_json())

        vega = folium.features.VegaLite(
            climb_profile_json,
            width=200,
            height=200,
        )
        circle = folium.CircleMarker(
            radius=15,
            location=[row["lat"], row["lon"]],
            # tooltip = label,
            color="crimson",
            fill=True,
        )
        # popup = folium.Popup()
        # vega.add_to(popup)
        # popup.add_to(circle)
        circle.add_to(route_map)
        # circle_marker = folium.CircleMarker(
        #     [row["lat"], row["lon"]],
        #     radius=15,
        #     popup=folium.Popup(max_width=400).add_child(
        #         folium.VegaLite(climb_profile_json, width=400, height=400)
        #     ),
        # )

    st.table(
        df_peaks[
            ["length", "total_ascent", "grade", "climb_score", "hill_category"]
        ].reset_index(drop=True)
    )

    st_data = st_folium(route_map, height=600, width=850)

    st.altair_chart(chart, use_container_width=True)

    for index, row in df_peaks.reset_index(drop=True).iterrows():
        df_hill = (
            df[
                df["distance_from_start"].between(
                    row["prev_distance_from_start"],
                    row["distance_from_start"],
                )
            ]
            .assign(
                distance_from_start=lambda df_: (
                    df_["distance_from_start"] - row["prev_distance_from_start"]
                )
                * 1_000
            )
            .assign(color_grade=lambda df_: df_["grade"].map(grade_to_color))
        )
        df_new_index = pd.DataFrame(
            index=pd.Index(np.arange(0, df_hill["distance_from_start"].max(), 10))
        )
        df_hill_resample = pd.concat(
            [df_hill.set_index("distance_from_start"), df_new_index], axis=0
        ).sort_index()
        df_hill_resample = df_hill_resample[["elev", "grade"]].interpolate()
        df_hill_resample["color_grade"] = df_hill_resample["grade"].map(grade_to_color)
        df_hill_resample = (
            df_hill_resample.reset_index()
            .rename(columns={"index": "distance_from_start"})
            .sort_values(by="distance_from_start")
        )
        max_grade = df_hill_resample["grade"].rolling(10).mean().max() / 100
        title = f"""Climb {index+1}, length:{row['length']:.2f}km
        Avg. grade: {(row['grade']/100_000):.2%}
        Max. grade: {max_grade:.2%}
        Total ascent: {int(row['total_ascent']):d}hm"""
        climb_profile = generate_climb_profile(df_hill_resample, title)
        st.altair_chart(climb_profile, use_container_width=True)