Spaces:
Running
Running
File size: 9,641 Bytes
8ca01ad 6fef025 89c5f18 f5b8400 53b0019 d74a18b 15b1858 d74a18b 8642b09 426fdd5 def1e6b d74a18b 5d51b41 0318f31 feed948 9a27085 77751b8 def1e6b 15b1858 53b0019 0318f31 c469318 0318f31 b21c027 19c8bea f5b8400 431834a f5b8400 431834a b25e2bf 4b692ad b25e2bf 431834a b25e2bf 4b692ad 88230b6 431834a 4b692ad feed948 6fef025 431834a 15b1858 81987e1 19aac56 f5b8400 0318f31 ac1a404 feed948 19c8bea 9132fbc ac1a404 f5b8400 19c8bea f5b8400 19c8bea 72a8b28 def1e6b 19c8bea def1e6b 19c8bea def1e6b b385c52 9a27085 b385c52 ac1a404 19c8bea b385c52 60304df d6deb6c 2386f84 d6deb6c 2386f84 b385c52 2386f84 b385c52 2386f84 ac1a404 b385c52 ac1a404 d74a18b 19c8bea 15b1858 9a27085 358114d d6deb6c 2386f84 9a27085 2386f84 19c8bea 15b1858 ac1a404 9a27085 bdcf524 0a4458d 15b1858 feed948 15b1858 9a27085 15b1858 f345af2 feed948 9a27085 15b1858 0a4458d 15b1858 f345af2 feed948 9a27085 0318f31 15b1858 2944f54 9a27085 15b1858 8eff0b6 9a27085 bb307df e5beca8 8fc64ff 19c8bea 8eff0b6 15b1858 def1e6b feed948 8ca01ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
from random import randint
from all_models import models
from datetime import datetime
#from concurrent.futures import TimeoutError, ThreadPoolExecutor
import time
import logging
import traceback # For better error reporting
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
#logger = logging.getLogger()
#for handler in logger.handlers[:]:
# handler.close()
# logger.removeHandler(handler)
logging.basicConfig(level=logging.DEBUG)
now2 = 0
index_tracker = 0
model_scores = {model: 0 for model in models}
processed_models_count = 0
kii=" blonde mohawk femboy playing game with self at computer with programmer socks on, still a wip"
combined_prompt = "cat"
def get_current_time():
now = datetime.now()
now2 = now
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
ki = f'{kii} {current_time}'
return ki
# Sanitize file names and truncate them
def sanitize_file_name(file_name, max_length=100):
"""Shortens and removes unsafe characters from file name."""
file_name = file_name[:max_length]
return file_name.replace(" ", "_").replace("/", "_")
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr.load(f'models/{model}')
models_load.update({model: m})
models_load[model] = m # Store in dictionary
print(f"[[[[[[]]]]] ")
print(f"[[[[[[]]]]] ")
print(f"{m}\n");
print(f"[[[[[[]]]]] ")
print(f"[[[[[[]]]]] ")
except Exception as error:
print(f"********** Error loading model ")
print(f"********** Error loading model ")
print(f"********** Error loading model ")
print(f" {model}: {error}\n")
print(f"********** Error loading model ")
print(f"********** Error loading model ")
print(f"********** Error loading model ")
#m = gr.Interface(lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(), queue=False)
#models_load.update({model: m})
traceback.print_exc() # Prints full error stack trace for debugging
#m = gr.Interface(fn=lambda _: None, inputs=gr.Textbox(), outputs=gr.Image(), queue=False)
models_load[model] = None
# m = gr.Interface(lambda txt: None, ['text'], ['image'])
# models_load.update({model: m})
#return models_load # Return dictionary instead of using global
load_fn(models)
num_models = len(models)
default_models = models[:num_models]
def extend_choices(choices):
return choices + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
#def gen_fn(model_str, prompt):
# if model_str == 'NA':
# return None
# noise = str(randint(0, 9999))
# return models_load[model_str](f'{prompt} {noise}')
#executor = ThreadPoolExecutor(max_workers=num_models)
def gen_fn(model_str, prompt):
global index_tracker, model_scores, processed_models_count
if model_str == 'NA':
return None
try:
#index_tracker = (index_tracker + 1) % len(models)
#current_model_index = index_tracker
#current_model_name = models[current_model_index]
max_prompt_length = 100
#truncated_prompt = sanitize_file_name(prompt[:max_prompt_length])
#combined_prompt = f"{truncated_prompt}_{randint(0, 9999)}"
# Execute the model's processing with a timeout
#future = executor.submit(models_load[model_str], f"{prompt}")
#response = future.result(timeout=150) # Wait for result with timeout
response = models_load.get(model_str, lambda txt: None)(f'{prompt}')
if isinstance(response, gr.Image):
return response
elif isinstance(response, tuple):
return None
elif isinstance(response, str):
if processed_models_count == 0:
print(f"***a***********")
# print(f"{prompt}")
##print(f"{prompt}")
# print(f"{prompt}")
##print(f"***b***********")
model_scores[current_model_name] += 1
##print(f"OOO n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
processed_models_count += 1
if processed_models_count == len(models):
## print("\nCycle Complete! Updated Scores:")
## print(model_scores)
processed_models_count = 0
return response
except Exception as e:
if processed_models_count == 0:
print(f"******c*******")
# print(f"{prompt}")
# print(f"{prompt}")
# print(f"{prompt}")
## print(f"******d*******")
##print(f"--- n:{processed_models_count} x:{current_model_index} r[{model_scores[current_model_name]}] {model_str}")
processed_models_count += 1
if processed_models_count == len(models):
## print("\nCycle Complete! Updated Scores:")
## print(model_scores)
processed_models_count = 0
return None
def make_me():
with gr.Row():
txt_input = gr.Textbox(lines=2, value=kii, label=None)
gen_button = gr.Button('Generate images')
stop_button = gr.Button('Stop', variant='secondary', interactive=False)
#gen_button.click(lambda _: gr.update(interactive=True), None, stop_button)
#gen_button.click(lambda s: gr.update(interactive=True), None)
gen_button.click(lambda _: gr.update(interactive=True), None, stop_button)
gr.HTML(""" <div style="text-align: center; max-width: 100%; margin: 0 auto;"> <body> </body> </div> """)
with gr.Row():
output = [gr.Image(label=m) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gen_button.click(gen_fn, [m, txt_input], o)
stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
with gr.Accordion('Model selection', visible=False):
model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
js_code = """<script>const originalScroll = window.scrollTo; const originalShowToast = gradio.Toast.show;
gradio.Toast.show = function() { originalShowToast.apply(this, arguments); window.scrollTo = function() {};};
setTimeout(() => { window.scrollTo = originalScroll; }, 1000); // Restore scroll function after 3 seconds</script>"""
with gr.Blocks(css="""
label.float.svelte-i3tvor { top:auto!important; bottom: 0; position: absolute; background: rgba(0,0,0,0.0); left: var(--block-label-margin); color: rgba(200,200,200,.7);}
.genbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.stopbut { max-width: 50px; max-height: 30px; width:150px; height:30px}
.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}
textarea:hover { background:#55555555;}
textarea { overflow-y: scroll; top:0px; width: 100%; height:100%!important; font-size: 1.5em; letter-spacing: 3px; color: limegreen; border: none!important; background: none; outline: none !important; }
.form.svelte-633qhp{ flex-grow: 1; position: absolute; right: 0px; border-radius: 6px; z-index: 400000; resize: both; left: 52%; background: rgba(103, 103, 114, 0.35); height: 46px; width: 48%!important;}
label.svelte-173056l.svelte-173056l { display: block; width: 100%; height: 100%;}
.input-container.svelte-173056l.svelte-173056l { /* display: flex; */ position: absolute; border: 1px solid; padding: 0px; /* height: calc(100% - 32px); */ /* align-items: flex-end; */ border-radius: 6px; margin: 0px; top: 0px; left: 0px; /* bottom: -16px; */ width: 100%; min-height: 100%;}
textarea{ position: absolute; font-size: 1em !important; padding: 4px; background: none; height: 100% !important; height: 100%;}
.svelte-11xb1hd.padded{background:none;}span.svelte-1gfkn6j:not(.has-info) { margin-bottom: var(--spacing-lg); display: none;}
.lg.secondary{ min-width:20%!imoprtant; width: 150px !important; flex: none !important;}
.unpadded_box.svelte-1oiin9d { margin-top: 0; margin-left: auto!important; max-height: 134px!important; min-height: 156px!important; margin-right: auto!important; min-width: 133px !important;}
}""") as demo:
gr.Markdown("<script>" + js_code + "</script>")
make_me()
demo.queue()
demo.queue = False
demo.config["queue"] = False
demo.launch(max_threads=20)
#demo.queue(concurrency_count=999)
#demo.launch()
#load_fn(models)
#num_models = len(models)
#default_models = models[:num_models] |