Spaces:
Running
Running
File size: 5,851 Bytes
df1c0da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#!/usr/bin/env python3
import logging
import random
import subprocess
import soundfile as sf
import gradio as gr
import numpy as np
import sherpa_onnx
from huggingface_hub import hf_hub_download
sample_rate = 16000
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = "exp",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
def get_vad() -> sherpa_onnx.VoiceActivityDetector:
vad_model = _get_nn_model_filename(
repo_id="csukuangfj/vad",
filename="silero_vad.onnx",
subfolder=".",
)
config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = vad_model
config.silero_vad.threshold = 0.5
config.silero_vad.min_silence_duration = 0.1
config.silero_vad.min_speech_duration = 0.25
config.sample_rate = sample_rate
config.silero_vad.max_speech_duration = 20 # seconds
vad = sherpa_onnx.VoiceActivityDetector(
config,
buffer_size_in_seconds=180,
)
return vad
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process_uploaded_audio_file(
in_filename: str,
):
logging.warning(f"Processing audio {in_filename}")
if in_filename is None or in_filename == "":
return (
"",
build_html_output(
"Please first upload a file and then click " 'the button "Submit"',
"result_item_error",
),
"",
"",
)
return process_file(in_filename)
def process_uploaded_video_file(
in_filename: str,
):
logging.warning(f"Processing video {in_filename}")
if in_filename is None or in_filename == "":
return (
"",
build_html_output(
"Please first upload a file and then click " 'the button "Submit"',
"result_item_error",
),
"",
"",
)
logging.warning(f"Processing uploaded video file: {in_filename}")
return process_file(in_filename)
def process_file(filename: str):
vad = get_vad()
ffmpeg_cmd = [
"ffmpeg",
"-i",
filename,
"-f",
"s16le",
"-acodec",
"pcm_s16le",
"-ac",
"1",
"-ar",
str(sample_rate),
"-",
]
process = subprocess.Popen(
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
)
frames_per_read = int(sample_rate * 100) # 100 second
window_size = 512
buffer = []
all_samples = []
is_last = False
while True:
# *2 because int16_t has two bytes
data = process.stdout.read(frames_per_read * 2)
if not data:
if is_last:
break
is_last = True
data = np.zeros(sample_rate, dtype=np.int16)
samples = np.frombuffer(data, dtype=np.int16)
samples = samples.astype(np.float32) / 32768
buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]
if is_last:
vad.flush()
while not vad.empty():
all_samples.extend(vad.front.samples)
vad.pop()
suffix = random.randint(1000, 10000)
out_filename = f"{filename}-{suffix}.wav"
speech_samples = np.array(all_samples, dtype=np.float32)
sf.write(out_filename, speech_samples, samplerate=sample_rate)
return (
out_filename,
build_html_output(
"Done! Please download the generated .wav file", "result_item_success"
),
)
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
demo = gr.Blocks(css=css)
with demo:
gr.Markdown("Remove non-speeches")
with gr.Tabs():
with gr.TabItem("Upload audio from disk (音频)"):
uploaded_audio_file = gr.Audio(
sources=["upload"], # Choose between "microphone", "upload"
type="filepath",
label="Upload audio from disk",
)
upload_audio_button = gr.Button("Submit")
output_audio = gr.Audio(label="Output")
output_info_audio = gr.HTML(label="Info")
with gr.TabItem("Upload video from disk (视频)"):
uploaded_video_file = gr.Video(
sources=["upload"],
label="Upload from disk",
show_share_button=True,
)
upload_video_button = gr.Button("Submit")
output_video = gr.Video(label="Output")
output_info_video = gr.HTML(label="Info")
upload_video_button.click(
process_uploaded_video_file,
inputs=[
uploaded_video_file,
],
outputs=[
output_video,
output_info_video,
],
)
upload_audio_button.click(
process_uploaded_audio_file,
inputs=[
uploaded_audio_file,
],
outputs=[
output_audio,
output_info_audio,
],
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.WARNING)
demo.launch(share=True)
|