File size: 24,477 Bytes
a0504e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os \n",
    "from langchain.chains import RetrievalQA\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.document_loaders import TextLoader\n",
    "from langchain.document_loaders import PyPDFLoader\n",
    "from langchain.indexes import VectorstoreIndexCreator\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "from langchain.vectorstores import Chroma\n",
    "import panel as pn\n",
    "import tempfile"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": "(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  var force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, js_modules, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n    if (js_modules == null) js_modules = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls.length === 0 && js_modules.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error() {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (var i = 0; i < css_urls.length; i++) {\n      var url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error;\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    var skip = [];\n    if (window.requirejs) {\n      window.requirejs.config({'packages': {}, 'paths': {'Quill': 'https://cdn.quilljs.com/1.3.6/quill', 'gridstack': 'https://cdn.jsdelivr.net/npm/[email protected]/dist/gridstack-h5', 'notyf': 'https://cdn.jsdelivr.net/npm/notyf@3/notyf.min'}, 'shim': {'gridstack': {'exports': 'GridStack'}}});\n      require([\"Quill\"], function(Quill) {\n\twindow.Quill = Quill\n\ton_load()\n      })\n      require([\"gridstack\"], function(GridStack) {\n\twindow.GridStack = GridStack\n\ton_load()\n      })\n      require([\"notyf\"], function() {\n\ton_load()\n      })\n      root._bokeh_is_loading = css_urls.length + 3;\n    } else {\n      root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length;\n    }    if (((window['Quill'] !== undefined) && (!(window['Quill'] instanceof HTMLElement))) || window.requirejs) {\n      var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.js'];\n      for (var i = 0; i < urls.length; i++) {\n        skip.push(urls[i])\n      }\n    }    if (((window['GridStack'] !== undefined) && (!(window['GridStack'] instanceof HTMLElement))) || window.requirejs) {\n      var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/gridstack/[email protected]/dist/gridstack-h5.js'];\n      for (var i = 0; i < urls.length; i++) {\n        skip.push(urls[i])\n      }\n    }    if (((window['Notyf'] !== undefined) && (!(window['Notyf'] instanceof HTMLElement))) || window.requirejs) {\n      var urls = ['https://cdn.holoviz.org/panel/0.14.4/dist/bundled/notificationarea/notyf@3/notyf.min.js'];\n      for (var i = 0; i < urls.length; i++) {\n        skip.push(urls[i])\n      }\n    }    for (var i = 0; i < js_urls.length; i++) {\n      var url = js_urls[i];\n      if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t  on_load();\n\t}\n\tcontinue;\n      }\n      var element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error;\n      element.async = false;\n      element.src = url;\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n    for (var i = 0; i < js_modules.length; i++) {\n      var url = js_modules[i];\n      if (skip.indexOf(url) >= 0) {\n\tif (!window.requirejs) {\n\t  on_load();\n\t}\n\tcontinue;\n      }\n      var element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error;\n      element.async = false;\n      element.src = url;\n      element.type = \"module\";\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n    if (!js_urls.length && !js_modules.length) {\n      on_load()\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  var js_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\", \"https://unpkg.com/@holoviz/[email protected]/dist/panel.min.js\"];\n  var js_modules = [];\n  var css_urls = [\"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.bubble.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/bundled/quillinput/1.3.6/quill.snow.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/card.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/json.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/debugger.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/loading.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/widgets.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/markdown.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/alerts.css\", \"https://cdn.holoviz.org/panel/0.14.4/dist/css/dataframe.css\"];\n  var inline_js = [    function(Bokeh) {\n      inject_raw_css(\"\\n    .bk.pn-loading.arc:before {\\n      background-image: url(\\\"\\\");\\n      background-size: auto calc(min(50%, 400px));\\n    }\\n    \");\n    },    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n  ];\n\n  function run_inline_js() {\n    if ((root.Bokeh !== undefined) || (force === true)) {\n      for (var i = 0; i < inline_js.length; i++) {\n        inline_js[i].call(root, root.Bokeh);\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    }\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, js_modules, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));",
      "application/vnd.holoviews_load.v0+json": ""
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n  window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n    function JupyterCommManager() {\n    }\n\n    JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n      if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n        var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n        comm_manager.register_target(comm_id, function(comm) {\n          comm.on_msg(msg_handler);\n        });\n      } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n        window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n          comm.onMsg = msg_handler;\n        });\n      } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n        google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n          var messages = comm.messages[Symbol.asyncIterator]();\n          function processIteratorResult(result) {\n            var message = result.value;\n            console.log(message)\n            var content = {data: message.data, comm_id};\n            var buffers = []\n            for (var buffer of message.buffers || []) {\n              buffers.push(new DataView(buffer))\n            }\n            var metadata = message.metadata || {};\n            var msg = {content, buffers, metadata}\n            msg_handler(msg);\n            return messages.next().then(processIteratorResult);\n          }\n          return messages.next().then(processIteratorResult);\n        })\n      }\n    }\n\n    JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n      if (comm_id in window.PyViz.comms) {\n        return window.PyViz.comms[comm_id];\n      } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n        var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n        var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n        if (msg_handler) {\n          comm.on_msg(msg_handler);\n        }\n      } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n        var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n        comm.open();\n        if (msg_handler) {\n          comm.onMsg = msg_handler;\n        }\n      } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n        var comm_promise = google.colab.kernel.comms.open(comm_id)\n        comm_promise.then((comm) => {\n          window.PyViz.comms[comm_id] = comm;\n          if (msg_handler) {\n            var messages = comm.messages[Symbol.asyncIterator]();\n            function processIteratorResult(result) {\n              var message = result.value;\n              var content = {data: message.data};\n              var metadata = message.metadata || {comm_id};\n              var msg = {content, metadata}\n              msg_handler(msg);\n              return messages.next().then(processIteratorResult);\n            }\n            return messages.next().then(processIteratorResult);\n          }\n        }) \n        var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n          return comm_promise.then((comm) => {\n            comm.send(data, metadata, buffers, disposeOnDone);\n          });\n        };\n        var comm = {\n          send: sendClosure\n        };\n      }\n      window.PyViz.comms[comm_id] = comm;\n      return comm;\n    }\n    window.PyViz.comm_manager = new JupyterCommManager();\n    \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n  var div = document.createElement(\"div\");\n  var script = document.createElement(\"script\");\n  node.appendChild(div);\n  node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n  var output_area = handle.output_area;\n  var output = handle.output;\n  if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n    return\n  }\n  var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n  var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n  if (id !== undefined) {\n    var nchildren = toinsert.length;\n    var html_node = toinsert[nchildren-1].children[0];\n    html_node.innerHTML = output.data[HTML_MIME_TYPE];\n    var scripts = [];\n    var nodelist = html_node.querySelectorAll(\"script\");\n    for (var i in nodelist) {\n      if (nodelist.hasOwnProperty(i)) {\n        scripts.push(nodelist[i])\n      }\n    }\n\n    scripts.forEach( function (oldScript) {\n      var newScript = document.createElement(\"script\");\n      var attrs = [];\n      var nodemap = oldScript.attributes;\n      for (var j in nodemap) {\n        if (nodemap.hasOwnProperty(j)) {\n          attrs.push(nodemap[j])\n        }\n      }\n      attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n      newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n      oldScript.parentNode.replaceChild(newScript, oldScript);\n    });\n    if (JS_MIME_TYPE in output.data) {\n      toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n    }\n    output_area._hv_plot_id = id;\n    if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n      window.PyViz.plot_index[id] = Bokeh.index[id];\n    } else {\n      window.PyViz.plot_index[id] = null;\n    }\n  } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n    var bk_div = document.createElement(\"div\");\n    bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n    var script_attrs = bk_div.children[0].attributes;\n    for (var i = 0; i < script_attrs.length; i++) {\n      toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n    }\n    // store reference to server id on output_area\n    output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n  }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n  var id = handle.cell.output_area._hv_plot_id;\n  var server_id = handle.cell.output_area._bokeh_server_id;\n  if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n  var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n  if (server_id !== null) {\n    comm.send({event_type: 'server_delete', 'id': server_id});\n    return;\n  } else if (comm !== null) {\n    comm.send({event_type: 'delete', 'id': id});\n  }\n  delete PyViz.plot_index[id];\n  if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n    var doc = window.Bokeh.index[id].model.document\n    doc.clear();\n    const i = window.Bokeh.documents.indexOf(doc);\n    if (i > -1) {\n      window.Bokeh.documents.splice(i, 1);\n    }\n  }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n  delete PyViz.comms[\"hv-extension-comm\"];\n  window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n  handle_clear_output(event, {cell: {output_area: handle.output_area}})\n  handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n  function append_mime(data, metadata, element) {\n    // create a DOM node to render to\n    var toinsert = this.create_output_subarea(\n    metadata,\n    CLASS_NAME,\n    EXEC_MIME_TYPE\n    );\n    this.keyboard_manager.register_events(toinsert);\n    // Render to node\n    var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n    render(props, toinsert[0]);\n    element.append(toinsert);\n    return toinsert\n  }\n\n  events.on('output_added.OutputArea', handle_add_output);\n  events.on('output_updated.OutputArea', handle_update_output);\n  events.on('clear_output.CodeCell', handle_clear_output);\n  events.on('delete.Cell', handle_clear_output);\n  events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n  OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n    safe: true,\n    index: 0\n  });\n}\n\nif (window.Jupyter !== undefined) {\n  try {\n    var events = require('base/js/events');\n    var OutputArea = require('notebook/js/outputarea').OutputArea;\n    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n      register_renderer(events, OutputArea);\n    }\n  } catch(err) {\n  }\n}\n",
      "application/vnd.holoviews_load.v0+json": ""
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<style>.bk-root, .bk-root .bk:before, .bk-root .bk:after {\n",
       "  font-family: var(--jp-ui-font-size1);\n",
       "  font-size: var(--jp-ui-font-size1);\n",
       "  color: var(--jp-ui-font-color1);\n",
       "}\n",
       "</style>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "pn.extension('texteditor', template=\"bootstrap\", sizing_mode='stretch_width')\n",
    "pn.state.template.param.update(\n",
    "    main_max_width=\"690px\",\n",
    "    header_background=\"#F08080\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "file_input = pn.widgets.FileInput(width=300)\n",
    "\n",
    "openaikey = pn.widgets.PasswordInput(\n",
    "    value=\"\", placeholder=\"Enter your OpenAI API Key here...\", width=300\n",
    ")\n",
    "prompt = pn.widgets.TextEditor(\n",
    "    value=\"\", placeholder=\"Enter your questions here...\", height=160, toolbar=False\n",
    ")\n",
    "run_button = pn.widgets.Button(name=\"Run!\")\n",
    "\n",
    "select_k = pn.widgets.IntSlider(\n",
    "    name=\"Number of relevant chunks\", start=1, end=5, step=1, value=2\n",
    ")\n",
    "select_chain_type = pn.widgets.RadioButtonGroup(\n",
    "    name='Chain type', \n",
    "    options=['stuff', 'map_reduce', \"refine\", \"map_rerank\"]\n",
    ")\n",
    "\n",
    "widgets = pn.Row(\n",
    "    pn.Column(prompt, run_button, margin=5),\n",
    "    pn.Card(\n",
    "        \"Chain type:\",\n",
    "        pn.Column(select_chain_type, select_k),\n",
    "        title=\"Advanced settings\", margin=10\n",
    "    ), width=600\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def qa(file, query, chain_type, k):\n",
    "    # load document\n",
    "    loader = PyPDFLoader(file)\n",
    "    documents = loader.load()\n",
    "    # split the documents into chunks\n",
    "    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "    texts = text_splitter.split_documents(documents)\n",
    "    # select which embeddings we want to use\n",
    "    embeddings = OpenAIEmbeddings()\n",
    "    # create the vectorestore to use as the index\n",
    "    db = Chroma.from_documents(texts, embeddings)\n",
    "    # expose this index in a retriever interface\n",
    "    retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n",
    "    # create a chain to answer questions \n",
    "    qa = RetrievalQA.from_chain_type(\n",
    "        llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)\n",
    "    result = qa({\"query\": query})\n",
    "    print(result['result'])\n",
    "    return result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "convos = []  # store all panel objects in a list\n",
    "\n",
    "def qa_result(_):\n",
    "    os.environ[\"OPENAI_API_KEY\"] = openaikey.value\n",
    "    \n",
    "    # save pdf file to a temp file \n",
    "    if file_input.value is not None:\n",
    "        file_input.save(\"/.cache/temp.pdf\")\n",
    "    \n",
    "        prompt_text = prompt.value\n",
    "        if prompt_text:\n",
    "            result = qa(file=\"/.cache/temp.pdf\", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)\n",
    "            convos.extend([\n",
    "                pn.Row(\n",
    "                    pn.panel(\"\\U0001F60A\", width=10),\n",
    "                    prompt_text,\n",
    "                    width=600\n",
    "                ),\n",
    "                pn.Row(\n",
    "                    pn.panel(\"\\U0001F916\", width=10),\n",
    "                    pn.Column(\n",
    "                        result[\"result\"],\n",
    "                        \"Relevant source text:\",\n",
    "                        pn.pane.Markdown('\\n--------------------------------------------------------------------\\n'.join(doc.page_content for doc in result[\"source_documents\"]))\n",
    "                    )\n",
    "                )\n",
    "            ])\n",
    "            #return convos\n",
    "    return pn.Column(*convos, margin=15, width=575, min_height=400)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "qa_interactive = pn.panel(\n",
    "    pn.bind(qa_result, run_button),\n",
    "    loading_indicator=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d572f1a081e741cbaca0638d4d0a860e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "BokehModel(combine_events=True, render_bundle={'docs_json': {'c482f79e-56ca-4f46-b90f-25b4af3de8df': {'defs': …"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# layout\n",
    "pn.Column(\n",
    "    pn.pane.Markdown(\"\"\"\n",
    "    ## \\U0001F60A! Question Answering with your PDF file\n",
    "    \n",
    "    1) Upload a PDF. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click \"Run\".\n",
    "    \n",
    "    \"\"\"),\n",
    "    pn.Row(file_input,openaikey),\n",
    "    output,\n",
    "    widgets\n",
    "\n",
    ").servable()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env1",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}