Files changed (2) hide show
  1. app.py +6 -3
  2. requirements.txt +0 -1
app.py CHANGED
@@ -3,6 +3,9 @@ from PIL import Image
3
  import gradio as gr
4
  import numpy
5
  import torch
 
 
 
6
 
7
  model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1', 'kadirnar/UNet-EfficientNet-b6-Istanbul']
8
  current_device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -87,7 +90,7 @@ def sahi_yolov5_inference(
87
 
88
  model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
89
  result = model.predict(image, imgsz=image_size)[0]
90
- render = render_result(model=model, image=image, result=result, rect_th=rect_th, text_th=text_th)
91
  return render
92
 
93
  elif model_type == "YOLOv7":
@@ -128,7 +131,7 @@ examples = [
128
  ["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
129
  ["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
130
  ["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
131
- ["data/Istanbul.jpg", 'kadirnar/UNet-EfficientNet-b6-Istanbul', "Unet-Istanbul", 512, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
132
  ]
133
 
134
 
@@ -141,7 +144,7 @@ demo = gr.Interface(
141
  article=article,
142
  examples=examples,
143
  theme="huggingface",
144
- cache_examples=True,
145
  )
146
 
147
  demo.launch(debug=True, enable_queue=True)
 
3
  import gradio as gr
4
  import numpy
5
  import torch
6
+ import os
7
+
8
+ os.system('pip install git+https://github.com/fcakyon/ultralyticsplus.git')
9
 
10
  model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1', 'kadirnar/UNet-EfficientNet-b6-Istanbul']
11
  current_device = "cuda" if torch.cuda.is_available() else "cpu"
 
90
 
91
  model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
92
  result = model.predict(image, imgsz=image_size)[0]
93
+ render = render_result(model=model, image=image, result=result)
94
  return render
95
 
96
  elif model_type == "YOLOv7":
 
131
  ["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
132
  ["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
133
  ["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
134
+ #["data/Istanbul.jpg", 'kadirnar/UNet-EfficientNet-b6-Istanbul', "Unet-Istanbul", 512, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
135
  ]
136
 
137
 
 
144
  article=article,
145
  examples=examples,
146
  theme="huggingface",
147
+ cache_examples=False,
148
  )
149
 
150
  demo.launch(debug=True, enable_queue=True)
requirements.txt CHANGED
@@ -2,6 +2,5 @@ torch==1.7.1
2
  yolov5==7.0.8
3
  sahi==0.11.11
4
  yolov7detect==1.0.1
5
- ultralyticsplus==0.0.26
6
  segmentation-models-pytorch==0.1.3
7
  albumentations==1.3.0
 
2
  yolov5==7.0.8
3
  sahi==0.11.11
4
  yolov7detect==1.0.1
 
5
  segmentation-models-pytorch==0.1.3
6
  albumentations==1.3.0