Spaces:
Running
Running
Update app_local.py (#17)
Browse files- Update app_local.py (e6226de0b4e526b510862269bb30165febee315f)
Co-authored-by: Yushen CHEN <SWivid@users.noreply.huggingface.co>
- app_local.py +39 -22
app_local.py
CHANGED
|
@@ -10,7 +10,7 @@ import tempfile
|
|
| 10 |
from einops import rearrange
|
| 11 |
from ema_pytorch import EMA
|
| 12 |
from vocos import Vocos
|
| 13 |
-
from pydub import AudioSegment
|
| 14 |
from model import CFM, UNetT, DiT, MMDiT
|
| 15 |
from cached_path import cached_path
|
| 16 |
from model.utils import (
|
|
@@ -20,6 +20,7 @@ from model.utils import (
|
|
| 20 |
)
|
| 21 |
from transformers import pipeline
|
| 22 |
import librosa
|
|
|
|
| 23 |
from txtsplit import txtsplit
|
| 24 |
|
| 25 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
@@ -31,6 +32,8 @@ pipe = pipeline(
|
|
| 31 |
device=device,
|
| 32 |
)
|
| 33 |
|
|
|
|
|
|
|
| 34 |
# --------------------- Settings -------------------- #
|
| 35 |
|
| 36 |
target_sample_rate = 24000
|
|
@@ -45,8 +48,8 @@ speed = 1.0
|
|
| 45 |
# fix_duration = 27 # None or float (duration in seconds)
|
| 46 |
fix_duration = None
|
| 47 |
|
| 48 |
-
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
| 49 |
-
checkpoint = torch.load(str(cached_path(f"hf://SWivid/
|
| 50 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
| 51 |
model = CFM(
|
| 52 |
transformer=model_cls(
|
|
@@ -69,20 +72,26 @@ def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
|
| 69 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 70 |
ema_model.copy_params_from_ema_to_model()
|
| 71 |
|
| 72 |
-
return
|
| 73 |
|
| 74 |
# load models
|
| 75 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 76 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 77 |
|
| 78 |
-
F5TTS_ema_model
|
| 79 |
-
E2TTS_ema_model
|
| 80 |
|
| 81 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
| 82 |
print(gen_text)
|
| 83 |
gr.Info("Converting audio...")
|
| 84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 85 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# Convert to mono
|
| 87 |
aseg = aseg.set_channels(1)
|
| 88 |
audio_duration = len(aseg)
|
|
@@ -93,10 +102,8 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 93 |
ref_audio = f.name
|
| 94 |
if exp_name == "F5-TTS":
|
| 95 |
ema_model = F5TTS_ema_model
|
| 96 |
-
base_model = F5TTS_base_model
|
| 97 |
elif exp_name == "E2-TTS":
|
| 98 |
ema_model = E2TTS_ema_model
|
| 99 |
-
base_model = E2TTS_base_model
|
| 100 |
|
| 101 |
if not ref_text.strip():
|
| 102 |
gr.Info("No reference text provided, transcribing reference audio...")
|
|
@@ -111,6 +118,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 111 |
else:
|
| 112 |
gr.Info("Using custom reference text...")
|
| 113 |
audio, sr = torchaudio.load(ref_audio)
|
|
|
|
| 114 |
# Audio
|
| 115 |
if audio.shape[0] > 1:
|
| 116 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
@@ -122,7 +130,7 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 122 |
audio = resampler(audio)
|
| 123 |
audio = audio.to(device)
|
| 124 |
# Chunk
|
| 125 |
-
chunks = txtsplit(gen_text,
|
| 126 |
results = []
|
| 127 |
generated_mel_specs = []
|
| 128 |
for chunk in progress.tqdm(chunks):
|
|
@@ -136,14 +144,14 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 136 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
| 137 |
# else:
|
| 138 |
zh_pause_punc = r"。,、;:?!"
|
| 139 |
-
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
| 140 |
-
|
| 141 |
-
duration = ref_audio_len + int(ref_audio_len / ref_text_len *
|
| 142 |
|
| 143 |
# inference
|
| 144 |
gr.Info(f"Generating audio using {exp_name}")
|
| 145 |
with torch.inference_mode():
|
| 146 |
-
generated, _ =
|
| 147 |
cond=audio,
|
| 148 |
text=final_text_list,
|
| 149 |
duration=duration,
|
|
@@ -155,7 +163,6 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 155 |
generated = generated[:, ref_audio_len:, :]
|
| 156 |
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
| 157 |
gr.Info("Running vocoder")
|
| 158 |
-
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 159 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
| 160 |
if rms < target_rms:
|
| 161 |
generated_wave = generated_wave * rms / target_rms
|
|
@@ -166,13 +173,23 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress
|
|
| 166 |
generated_wave = np.concatenate(results)
|
| 167 |
if remove_silence:
|
| 168 |
gr.Info("Removing audio silences... This may take a moment")
|
| 169 |
-
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
| 170 |
-
non_silent_wave = np.array([])
|
| 171 |
-
for interval in non_silent_intervals:
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
generated_wave = non_silent_wave
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
# spectogram
|
| 178 |
# with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
|
@@ -214,6 +231,6 @@ Long-form/batched inference + speech editing is coming soon!
|
|
| 214 |
|
| 215 |
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output])
|
| 216 |
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
|
| 217 |
-
|
| 218 |
|
| 219 |
app.queue().launch()
|
|
|
|
| 10 |
from einops import rearrange
|
| 11 |
from ema_pytorch import EMA
|
| 12 |
from vocos import Vocos
|
| 13 |
+
from pydub import AudioSegment, silence
|
| 14 |
from model import CFM, UNetT, DiT, MMDiT
|
| 15 |
from cached_path import cached_path
|
| 16 |
from model.utils import (
|
|
|
|
| 20 |
)
|
| 21 |
from transformers import pipeline
|
| 22 |
import librosa
|
| 23 |
+
import soundfile as sf
|
| 24 |
from txtsplit import txtsplit
|
| 25 |
|
| 26 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
|
| 32 |
device=device,
|
| 33 |
)
|
| 34 |
|
| 35 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 36 |
+
|
| 37 |
# --------------------- Settings -------------------- #
|
| 38 |
|
| 39 |
target_sample_rate = 24000
|
|
|
|
| 48 |
# fix_duration = 27 # None or float (duration in seconds)
|
| 49 |
fix_duration = None
|
| 50 |
|
| 51 |
+
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
|
| 52 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
| 53 |
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
| 54 |
model = CFM(
|
| 55 |
transformer=model_cls(
|
|
|
|
| 72 |
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 73 |
ema_model.copy_params_from_ema_to_model()
|
| 74 |
|
| 75 |
+
return model
|
| 76 |
|
| 77 |
# load models
|
| 78 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 79 |
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
| 80 |
|
| 81 |
+
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
| 82 |
+
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
| 83 |
|
| 84 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, progress = gr.Progress()):
|
| 85 |
print(gen_text)
|
| 86 |
gr.Info("Converting audio...")
|
| 87 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 88 |
aseg = AudioSegment.from_file(ref_audio_orig)
|
| 89 |
+
# remove long silence in reference audio
|
| 90 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
| 91 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
| 92 |
+
for non_silent_seg in non_silent_segs:
|
| 93 |
+
non_silent_wave += non_silent_seg
|
| 94 |
+
aseg = non_silent_wave
|
| 95 |
# Convert to mono
|
| 96 |
aseg = aseg.set_channels(1)
|
| 97 |
audio_duration = len(aseg)
|
|
|
|
| 102 |
ref_audio = f.name
|
| 103 |
if exp_name == "F5-TTS":
|
| 104 |
ema_model = F5TTS_ema_model
|
|
|
|
| 105 |
elif exp_name == "E2-TTS":
|
| 106 |
ema_model = E2TTS_ema_model
|
|
|
|
| 107 |
|
| 108 |
if not ref_text.strip():
|
| 109 |
gr.Info("No reference text provided, transcribing reference audio...")
|
|
|
|
| 118 |
else:
|
| 119 |
gr.Info("Using custom reference text...")
|
| 120 |
audio, sr = torchaudio.load(ref_audio)
|
| 121 |
+
max_chars = int(len(ref_text) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
|
| 122 |
# Audio
|
| 123 |
if audio.shape[0] > 1:
|
| 124 |
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
|
|
| 130 |
audio = resampler(audio)
|
| 131 |
audio = audio.to(device)
|
| 132 |
# Chunk
|
| 133 |
+
chunks = txtsplit(gen_text, 0.7*max_chars, 0.9*max_chars) # 100 chars preferred, 150 max
|
| 134 |
results = []
|
| 135 |
generated_mel_specs = []
|
| 136 |
for chunk in progress.tqdm(chunks):
|
|
|
|
| 144 |
# duration = int(fix_duration * target_sample_rate / hop_length)
|
| 145 |
# else:
|
| 146 |
zh_pause_punc = r"。,、;:?!"
|
| 147 |
+
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
| 148 |
+
chunk = len(chunk.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
| 149 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * chunk / speed)
|
| 150 |
|
| 151 |
# inference
|
| 152 |
gr.Info(f"Generating audio using {exp_name}")
|
| 153 |
with torch.inference_mode():
|
| 154 |
+
generated, _ = ema_model.sample(
|
| 155 |
cond=audio,
|
| 156 |
text=final_text_list,
|
| 157 |
duration=duration,
|
|
|
|
| 163 |
generated = generated[:, ref_audio_len:, :]
|
| 164 |
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
| 165 |
gr.Info("Running vocoder")
|
|
|
|
| 166 |
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
| 167 |
if rms < target_rms:
|
| 168 |
generated_wave = generated_wave * rms / target_rms
|
|
|
|
| 173 |
generated_wave = np.concatenate(results)
|
| 174 |
if remove_silence:
|
| 175 |
gr.Info("Removing audio silences... This may take a moment")
|
| 176 |
+
# non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
| 177 |
+
# non_silent_wave = np.array([])
|
| 178 |
+
# for interval in non_silent_intervals:
|
| 179 |
+
# start, end = interval
|
| 180 |
+
# non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
| 181 |
+
# generated_wave = non_silent_wave
|
| 182 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 183 |
+
sf.write(f.name, generated_wave, target_sample_rate)
|
| 184 |
+
aseg = AudioSegment.from_file(f.name)
|
| 185 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
| 186 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
| 187 |
+
for non_silent_seg in non_silent_segs:
|
| 188 |
+
non_silent_wave += non_silent_seg
|
| 189 |
+
aseg = non_silent_wave
|
| 190 |
+
aseg.export(f.name, format="wav")
|
| 191 |
+
generated_wave, _ = torchaudio.load(f.name)
|
| 192 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
| 193 |
|
| 194 |
# spectogram
|
| 195 |
# with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
|
|
|
| 231 |
|
| 232 |
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output])
|
| 233 |
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
|
| 234 |
+
|
| 235 |
|
| 236 |
app.queue().launch()
|