Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import gradio as gr | |
def apply_gaussian_blur(frame, intensity): | |
ksize = int(intensity) * 2 + 1 | |
return cv2.GaussianBlur(frame, (ksize, ksize), 0) | |
def apply_sharpening_filter(frame): | |
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) | |
return cv2.filter2D(frame, -1, kernel) | |
def apply_edge_detection(frame): | |
return cv2.Canny(frame, 100, 200) | |
def apply_invert_filter(frame): | |
return cv2.bitwise_not(frame) | |
def adjust_brightness_contrast(frame, alpha=1.0, beta=0): | |
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta) | |
def apply_grayscale_filter(frame): | |
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
def apply_sepia_filter(frame): | |
sepia_filter = np.array([[0.272, 0.534, 0.131], | |
[0.349, 0.686, 0.168], | |
[0.393, 0.769, 0.189]]) | |
sepia_frame = cv2.transform(frame, sepia_filter) | |
sepia_frame = np.clip(sepia_frame, 0, 255) | |
return sepia_frame | |
def apply_fall_filter(frame): | |
fall_filter = np.array([[0.393, 0.769, 0.189], | |
[0.349, 0.686, 0.168], | |
[0.272, 0.534, 0.131]]) | |
fall_frame = cv2.transform(frame, fall_filter) | |
fall_frame = np.clip(fall_frame, 0, 255) | |
return fall_frame | |
def apply_filter(filter_types, input_image, blur_intensity=1, brightness=1.0, contrast=50): | |
frame = input_image.copy() | |
for filter_type in filter_types: | |
if filter_type == "Gaussian Blur": | |
frame = apply_gaussian_blur(frame, blur_intensity) | |
elif filter_type == "Sharpen": | |
frame = apply_sharpening_filter(frame) | |
elif filter_type == "Edge Detection": | |
frame = apply_edge_detection(frame) | |
elif filter_type == "Invert": | |
frame = apply_invert_filter(frame) | |
elif filter_type == "Brightness/Contrast": | |
frame = adjust_brightness_contrast(frame, alpha=brightness, beta=contrast) | |
elif filter_type == "Grayscale": | |
frame = apply_grayscale_filter(frame) | |
elif filter_type == "Sepia": | |
frame = apply_sepia_filter(frame) | |
elif filter_type == "Sonbahar": | |
frame = apply_fall_filter(frame) | |
return frame | |
with gr.Blocks() as demo: | |
gr.Markdown("# Gelişmiş Web Kameradan Canlı Filtreleme") | |
filter_types = gr.CheckboxGroup( | |
label="Filtre Seçin", | |
choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness/Contrast", "Grayscale", "Sepia", "Sonbahar"], | |
value=["Gaussian Blur"] | |
) | |
blur_intensity = gr.Slider(label="Gaussian Blur Yoğunluğu", minimum=1, maximum=10, step=1, value=1) | |
brightness = gr.Slider(label="Parlaklık", minimum=0.5, maximum=2.0, step=0.1, value=1.0) | |
contrast = gr.Slider(label="Kontrast", minimum=0, maximum=100, step=10, value=50) | |
input_image = gr.Image(label="Resim Yükle", type="numpy") | |
output_image = gr.Image(label="Filtre Uygulandı") | |
apply_button = gr.Button("Filtreyi Uygula") | |
apply_button.click(fn=apply_filter, inputs=[filter_types, input_image, blur_intensity, brightness, contrast], outputs=output_image) | |
demo.launch() | |