Spaces:
Running
Running
File size: 3,678 Bytes
de79343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
# Clothes Segmentation using U2NET #

[](https://opensource.org/licenses/MIT)
[](https://colab.research.google.com/drive/1EhEy3uQh-5oOSagUotVOJAf8m7Vqn0D6?usp=sharing)
This repo contains training code, inference code and pre-trained model for Cloths Parsing from human portrait.</br>
Here clothes are parsed into 3 category: Upper body(red), Lower body(green) and Full body(yellow)



This model works well with any background and almost all poses. For more samples visit [samples.md](samples.md)
# Techinal details
* **U2NET** : This project uses an amazing [U2NET](https://arxiv.org/abs/2005.09007) as a deep learning model. Instead of having 1 channel output from u2net for typical salient object detection task it outputs 4 channels each respresting upper body cloth, lower body cloth, fully body cloth and background. Only categorical cross-entropy loss is used for a given version of the checkpoint.
* **Dataset** : U2net is trained on 45k images [iMaterialist (Fashion) 2019 at FGVC6](https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data) dataset. To reduce complexity, I have clubbed the original 42 categories from dataset labels into 3 categories (upper body, lower body and full body). All images are resized into square `¯\_(ツ)_/¯` 768 x 768 px for training. (This experiment was conducted with 768 px but around 384 px will work fine too if one is retraining on another dataset).
# Training
- For training this project requires,
<ul>
<ul>
<li> PyTorch > 1.3.0</li>
<li> tensorboardX</li>
<li> gdown</li>
</ul>
</ul>
- Download dataset from this [link](https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data), extract all items.
- Set path of `train` folder which contains training images and `train.csv` which is label csv file in `options/base_options.py`
- To port original u2net of all layer except last layer please run `python setup_model_weights.py` and it will generate weights after model surgey in `prev_checkpoints` folder.
- You can explore various options in `options/base_options.py` like checkpoint saving folder, logs folder etc.
- For single gpu set `distributed = False` in `options/base_options.py`, for multi gpu set it to `True`.
- For single gpu run `python train.py`
- For multi gpu run <br>
`python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 --use_env train.py` <br>
Here command is for single node, 4 gpu. Tested only for single node.
- You can watch loss graphs and samples in tensorboard by running tensorboard command in log folder.
# Testing/Inference
- Download pretrained model from this [link](https://drive.google.com/file/d/1mhF3yqd7R-Uje092eypktNl-RoZNuiCJ/view?usp=sharing)(165 MB) in `trained_checkpoint` folder.
- Put input images in `input_images` folder
- Run `python infer.py` for inference.
- Output will be saved in `output_images`
### OR
- Inference in colab from here [](https://colab.research.google.com/drive/1EhEy3uQh-5oOSagUotVOJAf8m7Vqn0D6?usp=sharing)
# Acknowledgements
- U2net model is from original [u2net repo](https://github.com/xuebinqin/U-2-Net). Thanks to Xuebin Qin for amazing repo.
- Complete repo follows structure of [Pix2pixHD repo](https://github.com/NVIDIA/pix2pixHD)
|