File size: 2,487 Bytes
de79343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os

from tqdm import tqdm
from PIL import Image
import numpy as np

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)

import torch
import torch.nn.functional as F
import torchvision.transforms as transforms

from data.base_dataset import Normalize_image
from utils.saving_utils import load_checkpoint_mgpu

from networks import U2NET

device = "cuda"

image_dir = "input_images"
result_dir = "output_images"
checkpoint_path = os.path.join("trained_checkpoint", "cloth_segm_u2net_latest.pth")
do_palette = True


def get_palette(num_cls):
    """Returns the color map for visualizing the segmentation mask.

    Args:

        num_cls: Number of classes

    Returns:

        The color map

    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i)
            palette[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i)
            palette[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i)
            i += 1
            lab >>= 3
    return palette


transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)

net = U2NET(in_ch=3, out_ch=4)
net = load_checkpoint_mgpu(net, checkpoint_path)
net = net.to(device)
net = net.eval()

palette = get_palette(4)

images_list = sorted(os.listdir(image_dir))
pbar = tqdm(total=len(images_list))
for image_name in images_list:
    img = Image.open(os.path.join(image_dir, image_name)).convert("RGB")
    image_tensor = transform_rgb(img)
    image_tensor = torch.unsqueeze(image_tensor, 0)

    output_tensor = net(image_tensor.to(device))
    output_tensor = F.log_softmax(output_tensor[0], dim=1)
    output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
    output_tensor = torch.squeeze(output_tensor, dim=0)
    output_tensor = torch.squeeze(output_tensor, dim=0)
    output_arr = output_tensor.cpu().numpy()

    output_img = Image.fromarray(output_arr.astype("uint8"), mode="L")
    if do_palette:
        output_img.putpalette(palette)
    output_img.save(os.path.join(result_dir, image_name[:-3] + "png"))

    pbar.update(1)

pbar.close()