Spaces:
Running
Running
File size: 1,567 Bytes
de79343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import gdown
import torch
from networks import U2NET
from utils.saving_utils import save_checkpoint
os.makedirs("prev_checkpoints", exist_ok=True)
gdown.download(
"https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ",
"./prev_checkpoints/u2net.pth",
quiet=False,
)
u_net = U2NET(in_ch=3, out_ch=4)
save_checkpoint(u_net, os.path.join("prev_checkpoints", "u2net_random.pth"))
# u2net.pth contains trained weights
trained_net_pth = os.path.join("prev_checkpoints", "u2net.pth")
# u2net_random.pth contains random weights
custom_net_pth = os.path.join("prev_checkpoints", "u2net_random.pth")
net_state_dict = torch.load(trained_net_pth)
count = 0
for k, v in net_state_dict.items():
count += 1
print("Total number of layers in trained model are: {}".format(count))
custom_state_dict = torch.load(custom_net_pth)
count = 0
for k, v in custom_state_dict.items():
count += 1
print("Total number of layers in trained model are: {}".format(count))
total_count = 0
update_count = 0
for k, v in net_state_dict.items():
total_count += 1
if custom_state_dict[k].shape == v.shape:
update_count += 1
custom_state_dict[k] = v
print(
"Out of {} layers in custom network, {} layers weights are recovered from trained model".format(
total_count, update_count
)
)
torch.save(
custom_state_dict, os.path.join("prev_checkpoints", "cloth_segm_unet_surgery.pth")
)
print("cloth_segm_unet_surgery.pth is generated in prev_checkpoints directory!") |