detecting_dress / cloth_segmentation /data /custom_dataset_data_loader.py
gaur3009's picture
Upload 44 files
de79343 verified
raw
history blame contribute delete
2.03 kB
import torch.utils.data
from data.base_data_loader import BaseDataLoader
def CreateDataset(opt):
dataset = None
from data.aligned_dataset import AlignedDataset
dataset = AlignedDataset()
print("dataset [%s] was created" % (dataset.name()))
dataset.initialize(opt)
return dataset
class CustomDatasetDataLoader(BaseDataLoader):
def name(self):
return 'CustomDatasetDataLoader'
def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
self.dataset = CreateDataset(opt)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
sampler=data_sampler(self.dataset,
not opt.serial_batches, opt.distributed),
num_workers=int(opt.nThreads),
pin_memory=True)
def get_loader(self):
return self.dataloader
def __len__(self):
return min(len(self.dataset), self.opt.max_dataset_size)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return torch.utils.data.RandomSampler(dataset)
else:
return torch.utils.data.SequentialSampler(dataset)
def sample_data(loader):
while True:
for batch in loader:
yield batch
class CustomTestDataLoader(BaseDataLoader):
def name(self):
return 'CustomDatasetDataLoader'
def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
self.dataset = CreateDataset(opt)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
num_workers=int(opt.nThreads),
pin_memory=True)
def get_loader(self):
return self.dataloader
def __len__(self):
return min(len(self.dataset), self.opt.max_dataset_size)