Spaces:
Running
Running
import os | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torch.utils.tensorboard import SummaryWriter | |
# Adding image in tensorboardX | |
def tensor_for_board(img_tensor): | |
# map into [0,1] | |
tensor = (img_tensor.clone()+1) * 0.5 | |
tensor.cpu().clamp(0, 1) | |
if tensor.size(1) == 1: | |
tensor = tensor.repeat(1, 3, 1, 1) | |
return tensor | |
def tensor_list_for_board(img_tensors_list): | |
grid_h = len(img_tensors_list) | |
grid_w = max(len(img_tensors) for img_tensors in img_tensors_list) | |
batch_size, channel, height, width = tensor_for_board( | |
img_tensors_list[0][0]).size() | |
canvas_h = grid_h * height | |
canvas_w = grid_w * width | |
canvas = torch.FloatTensor( | |
batch_size, channel, canvas_h, canvas_w).fill_(0.5) | |
for i, img_tensors in enumerate(img_tensors_list): | |
for j, img_tensor in enumerate(img_tensors): | |
offset_h = i * height | |
offset_w = j * width | |
tensor = tensor_for_board(img_tensor) | |
canvas[:, :, offset_h: offset_h + height, | |
offset_w: offset_w + width].copy_(tensor) | |
return canvas | |
def board_add_image(board, tag_name, img_tensor, step_count): | |
tensor = tensor_for_board(img_tensor) | |
for i, img in enumerate(tensor): | |
board.add_image('%s/%03d' % (tag_name, i), img, step_count) | |
def board_add_images(board, tag_name, img_tensors_list, step_count): | |
tensor = tensor_list_for_board(img_tensors_list) | |
for i, img in enumerate(tensor): | |
board.add_image('%s/%03d' % (tag_name, i), img, step_count) | |