Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,74 +7,122 @@ from torchvision import transforms
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
-
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
12 |
-
|
13 |
-
# Load the state dictionary
|
14 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
15 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
16 |
model.load_state_dict(state_dict)
|
17 |
model.eval()
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def segment_dress(image_np):
|
20 |
-
"""Segment the dress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
transform_pipeline = transforms.Compose([
|
22 |
transforms.ToTensor(),
|
23 |
transforms.Resize((320, 320))
|
24 |
])
|
|
|
25 |
image = Image.fromarray(image_np).convert("RGB")
|
26 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
27 |
-
|
28 |
with torch.no_grad():
|
29 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
|
39 |
-
mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def change_dress_color(image_path, color):
|
44 |
-
"""Change the dress color naturally while keeping
|
45 |
if image_path is None:
|
46 |
return None
|
47 |
|
48 |
img = Image.open(image_path).convert("RGB")
|
49 |
img_np = np.array(img)
|
50 |
-
mask = segment_dress(img_np)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if mask is None:
|
53 |
return img # No dress detected
|
54 |
|
55 |
# Convert the selected color to BGR
|
56 |
color_map = {
|
57 |
-
"Red": (0, 0, 255),
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"Yellow": (0, 255, 255),
|
61 |
-
"Purple": (128, 0, 128)
|
62 |
}
|
63 |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Convert back to RGB
|
74 |
-
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
|
75 |
-
|
76 |
-
# Apply Poisson blending for realistic color application
|
77 |
-
img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, (img_np.shape[1]//2, img_np.shape[0]//2), cv2.NORMAL_CLONE)
|
78 |
|
79 |
return Image.fromarray(img_recolored)
|
80 |
|
@@ -83,11 +131,11 @@ demo = gr.Interface(
|
|
83 |
fn=change_dress_color,
|
84 |
inputs=[
|
85 |
gr.Image(type="filepath", label="Upload Dress Image"),
|
86 |
-
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color")
|
87 |
],
|
88 |
outputs=gr.Image(type="pil", label="Color Changed Dress"),
|
89 |
title="Dress Color Changer",
|
90 |
-
description="Upload an image of a dress and select a new color to change its appearance naturally."
|
91 |
)
|
92 |
|
93 |
if __name__ == "__main__":
|
|
|
7 |
from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
|
8 |
|
9 |
# Load U²-Net model
|
10 |
+
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
|
|
|
|
12 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
13 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
|
14 |
model.load_state_dict(state_dict)
|
15 |
model.eval()
|
16 |
|
17 |
+
def detect_design(image_np):
|
18 |
+
"""Detects if a design exists on the dress using edge detection & clustering."""
|
19 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
20 |
+
edges = cv2.Canny(gray, 50, 150)
|
21 |
+
|
22 |
+
# Dilation to highlight patterns
|
23 |
+
kernel = np.ones((3, 3), np.uint8)
|
24 |
+
edges = cv2.dilate(edges, kernel, iterations=1)
|
25 |
+
|
26 |
+
# Count edge density
|
27 |
+
design_ratio = np.sum(edges > 0) / (image_np.shape[0] * image_np.shape[1])
|
28 |
+
|
29 |
+
return design_ratio > 0.02, edges # If edge density is high, assume a design is present
|
30 |
+
|
31 |
def segment_dress(image_np):
|
32 |
+
"""Segment the dress using U²-Net & refine with Lab color space."""
|
33 |
+
|
34 |
+
# Convert to Lab space
|
35 |
+
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
36 |
+
L, A, B = cv2.split(img_lab)
|
37 |
+
|
38 |
+
# Use K-means clustering to detect dominant dress region
|
39 |
+
pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
|
40 |
+
k = 3 # Three clusters: background, skin, dress
|
41 |
+
_, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
|
42 |
+
labels = labels.reshape(image_np.shape[:2])
|
43 |
+
|
44 |
+
# Assume dress is the largest non-background cluster
|
45 |
+
unique_labels, counts = np.unique(labels, return_counts=True)
|
46 |
+
dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
|
47 |
+
|
48 |
+
# Create dress mask
|
49 |
+
mask = (labels == dress_label).astype(np.uint8) * 255
|
50 |
+
|
51 |
+
# Use U²-Net prediction to refine segmentation
|
52 |
transform_pipeline = transforms.Compose([
|
53 |
transforms.ToTensor(),
|
54 |
transforms.Resize((320, 320))
|
55 |
])
|
56 |
+
|
57 |
image = Image.fromarray(image_np).convert("RGB")
|
58 |
input_tensor = transform_pipeline(image).unsqueeze(0)
|
59 |
+
|
60 |
with torch.no_grad():
|
61 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
62 |
+
|
63 |
+
u2net_mask = (output > 0.5).astype(np.uint8) * 255
|
64 |
+
u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
|
65 |
|
66 |
+
# Combine K-means and U²-Net masks
|
67 |
+
refined_mask = cv2.bitwise_and(mask, u2net_mask)
|
68 |
+
|
69 |
+
# Morphological operations for smoothness
|
70 |
+
kernel = np.ones((5, 5), np.uint8)
|
71 |
+
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
72 |
+
refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
|
73 |
|
74 |
+
return refined_mask
|
75 |
+
|
76 |
+
def recolor_dress(image_np, mask, target_color, edges):
|
77 |
+
"""Change dress color while preserving texture, shadows, and designs."""
|
78 |
|
79 |
+
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
80 |
+
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
|
|
|
|
|
81 |
|
82 |
+
# Exclude design from recoloring
|
83 |
+
design_mask = (edges > 0).astype(np.uint8) * 255
|
84 |
+
mask = cv2.bitwise_and(mask, cv2.bitwise_not(design_mask))
|
85 |
+
|
86 |
+
# Preserve lightness (L) and change only chromatic channels (A & B)
|
87 |
+
blend_factor = 0.7
|
88 |
+
img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
|
89 |
+
img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
|
90 |
+
|
91 |
+
img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
|
92 |
+
return img_recolored
|
93 |
|
94 |
def change_dress_color(image_path, color):
|
95 |
+
"""Change the dress color naturally while keeping designs intact."""
|
96 |
if image_path is None:
|
97 |
return None
|
98 |
|
99 |
img = Image.open(image_path).convert("RGB")
|
100 |
img_np = np.array(img)
|
|
|
101 |
|
102 |
+
# Detect if a design is present
|
103 |
+
design_present, edges = detect_design(img_np)
|
104 |
+
|
105 |
+
# Get dress segmentation mask
|
106 |
+
mask = segment_dress(img_np)
|
107 |
+
|
108 |
if mask is None:
|
109 |
return img # No dress detected
|
110 |
|
111 |
# Convert the selected color to BGR
|
112 |
color_map = {
|
113 |
+
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
|
114 |
+
"Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
|
115 |
+
"White": (255, 255, 255), "Black": (0, 0, 0)
|
|
|
|
|
116 |
}
|
117 |
new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
|
118 |
|
119 |
+
# Apply recoloring logic
|
120 |
+
if design_present:
|
121 |
+
print("Design detected! Coloring only non-design areas.")
|
122 |
+
img_recolored = recolor_dress(img_np, mask, new_color_bgr, edges)
|
123 |
+
else:
|
124 |
+
print("No design detected. Coloring entire dress.")
|
125 |
+
img_recolored = recolor_dress(img_np, mask, new_color_bgr, np.zeros_like(mask)) # No design mask
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
return Image.fromarray(img_recolored)
|
128 |
|
|
|
131 |
fn=change_dress_color,
|
132 |
inputs=[
|
133 |
gr.Image(type="filepath", label="Upload Dress Image"),
|
134 |
+
gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
|
135 |
],
|
136 |
outputs=gr.Image(type="pil", label="Color Changed Dress"),
|
137 |
title="Dress Color Changer",
|
138 |
+
description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs."
|
139 |
)
|
140 |
|
141 |
if __name__ == "__main__":
|