gaur3009 commited on
Commit
d3f9ca8
·
verified ·
1 Parent(s): 9cebca9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -35
app.py CHANGED
@@ -7,74 +7,122 @@ from torchvision import transforms
7
  from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
  # Load U²-Net model
10
- model_path = "cloth_segmentation/networks/u2net.pth" # Ensure this path is correct
11
  model = U2NET(3, 1)
12
-
13
- # Load the state dictionary
14
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
15
  state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
16
  model.load_state_dict(state_dict)
17
  model.eval()
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  def segment_dress(image_np):
20
- """Segment the dress from the image using U²-Net and refine the mask."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  transform_pipeline = transforms.Compose([
22
  transforms.ToTensor(),
23
  transforms.Resize((320, 320))
24
  ])
 
25
  image = Image.fromarray(image_np).convert("RGB")
26
  input_tensor = transform_pipeline(image).unsqueeze(0)
27
-
28
  with torch.no_grad():
29
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
 
 
 
30
 
31
- mask = (output > 0.5).astype(np.uint8) * 255 # Binary mask
 
 
 
 
 
 
32
 
33
- # Resize mask to original image size
34
- mask = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
 
 
35
 
36
- # Apply morphological operations for better segmentation
37
- kernel = np.ones((7, 7), np.uint8)
38
- mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # Close small gaps
39
- mask = cv2.dilate(mask, kernel, iterations=2) # Expand the detected dress area
40
 
41
- return mask
 
 
 
 
 
 
 
 
 
 
42
 
43
  def change_dress_color(image_path, color):
44
- """Change the dress color naturally while keeping textures."""
45
  if image_path is None:
46
  return None
47
 
48
  img = Image.open(image_path).convert("RGB")
49
  img_np = np.array(img)
50
- mask = segment_dress(img_np)
51
 
 
 
 
 
 
 
52
  if mask is None:
53
  return img # No dress detected
54
 
55
  # Convert the selected color to BGR
56
  color_map = {
57
- "Red": (0, 0, 255),
58
- "Blue": (255, 0, 0),
59
- "Green": (0, 255, 0),
60
- "Yellow": (0, 255, 255),
61
- "Purple": (128, 0, 128)
62
  }
63
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
64
 
65
- # Convert image to LAB color space for better blending
66
- img_lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB)
67
- new_color_lab = cv2.cvtColor(np.uint8([[new_color_bgr]]), cv2.COLOR_BGR2LAB)[0][0]
68
-
69
- # Preserve texture by only modifying the A & B channels
70
- img_lab[..., 1] = np.where(mask == 255, new_color_lab[1], img_lab[..., 1]) # Modify A-channel
71
- img_lab[..., 2] = np.where(mask == 255, new_color_lab[2], img_lab[..., 2]) # Modify B-channel
72
-
73
- # Convert back to RGB
74
- img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
75
-
76
- # Apply Poisson blending for realistic color application
77
- img_recolored = cv2.seamlessClone(img_recolored, img_np, mask, (img_np.shape[1]//2, img_np.shape[0]//2), cv2.NORMAL_CLONE)
78
 
79
  return Image.fromarray(img_recolored)
80
 
@@ -83,11 +131,11 @@ demo = gr.Interface(
83
  fn=change_dress_color,
84
  inputs=[
85
  gr.Image(type="filepath", label="Upload Dress Image"),
86
- gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple"], label="Choose New Dress Color")
87
  ],
88
  outputs=gr.Image(type="pil", label="Color Changed Dress"),
89
  title="Dress Color Changer",
90
- description="Upload an image of a dress and select a new color to change its appearance naturally."
91
  )
92
 
93
  if __name__ == "__main__":
 
7
  from cloth_segmentation.networks.u2net import U2NET # Import U²-Net
8
 
9
  # Load U²-Net model
10
+ model_path = "cloth_segmentation/networks/u2net.pth"
11
  model = U2NET(3, 1)
 
 
12
  state_dict = torch.load(model_path, map_location=torch.device('cpu'))
13
  state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} # Remove 'module.' prefix
14
  model.load_state_dict(state_dict)
15
  model.eval()
16
 
17
+ def detect_design(image_np):
18
+ """Detects if a design exists on the dress using edge detection & clustering."""
19
+ gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
20
+ edges = cv2.Canny(gray, 50, 150)
21
+
22
+ # Dilation to highlight patterns
23
+ kernel = np.ones((3, 3), np.uint8)
24
+ edges = cv2.dilate(edges, kernel, iterations=1)
25
+
26
+ # Count edge density
27
+ design_ratio = np.sum(edges > 0) / (image_np.shape[0] * image_np.shape[1])
28
+
29
+ return design_ratio > 0.02, edges # If edge density is high, assume a design is present
30
+
31
  def segment_dress(image_np):
32
+ """Segment the dress using U²-Net & refine with Lab color space."""
33
+
34
+ # Convert to Lab space
35
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
36
+ L, A, B = cv2.split(img_lab)
37
+
38
+ # Use K-means clustering to detect dominant dress region
39
+ pixel_values = img_lab.reshape((-1, 3)).astype(np.float32)
40
+ k = 3 # Three clusters: background, skin, dress
41
+ _, labels, centers = cv2.kmeans(pixel_values, k, None, (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0), 10, cv2.KMEANS_RANDOM_CENTERS)
42
+ labels = labels.reshape(image_np.shape[:2])
43
+
44
+ # Assume dress is the largest non-background cluster
45
+ unique_labels, counts = np.unique(labels, return_counts=True)
46
+ dress_label = unique_labels[np.argmax(counts[1:]) + 1] # Avoid background
47
+
48
+ # Create dress mask
49
+ mask = (labels == dress_label).astype(np.uint8) * 255
50
+
51
+ # Use U²-Net prediction to refine segmentation
52
  transform_pipeline = transforms.Compose([
53
  transforms.ToTensor(),
54
  transforms.Resize((320, 320))
55
  ])
56
+
57
  image = Image.fromarray(image_np).convert("RGB")
58
  input_tensor = transform_pipeline(image).unsqueeze(0)
59
+
60
  with torch.no_grad():
61
  output = model(input_tensor)[0][0].squeeze().cpu().numpy()
62
+
63
+ u2net_mask = (output > 0.5).astype(np.uint8) * 255
64
+ u2net_mask = cv2.resize(u2net_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
65
 
66
+ # Combine K-means and U²-Net masks
67
+ refined_mask = cv2.bitwise_and(mask, u2net_mask)
68
+
69
+ # Morphological operations for smoothness
70
+ kernel = np.ones((5, 5), np.uint8)
71
+ refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
72
+ refined_mask = cv2.GaussianBlur(refined_mask, (15, 15), 5)
73
 
74
+ return refined_mask
75
+
76
+ def recolor_dress(image_np, mask, target_color, edges):
77
+ """Change dress color while preserving texture, shadows, and designs."""
78
 
79
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
80
+ target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
 
 
81
 
82
+ # Exclude design from recoloring
83
+ design_mask = (edges > 0).astype(np.uint8) * 255
84
+ mask = cv2.bitwise_and(mask, cv2.bitwise_not(design_mask))
85
+
86
+ # Preserve lightness (L) and change only chromatic channels (A & B)
87
+ blend_factor = 0.7
88
+ img_lab[..., 1] = np.where(mask > 128, img_lab[..., 1] * (1 - blend_factor) + target_color_lab[1] * blend_factor, img_lab[..., 1])
89
+ img_lab[..., 2] = np.where(mask > 128, img_lab[..., 2] * (1 - blend_factor) + target_color_lab[2] * blend_factor, img_lab[..., 2])
90
+
91
+ img_recolored = cv2.cvtColor(img_lab, cv2.COLOR_LAB2RGB)
92
+ return img_recolored
93
 
94
  def change_dress_color(image_path, color):
95
+ """Change the dress color naturally while keeping designs intact."""
96
  if image_path is None:
97
  return None
98
 
99
  img = Image.open(image_path).convert("RGB")
100
  img_np = np.array(img)
 
101
 
102
+ # Detect if a design is present
103
+ design_present, edges = detect_design(img_np)
104
+
105
+ # Get dress segmentation mask
106
+ mask = segment_dress(img_np)
107
+
108
  if mask is None:
109
  return img # No dress detected
110
 
111
  # Convert the selected color to BGR
112
  color_map = {
113
+ "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255),
114
+ "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255),
115
+ "White": (255, 255, 255), "Black": (0, 0, 0)
 
 
116
  }
117
  new_color_bgr = np.array(color_map.get(color, (0, 0, 255)), dtype=np.uint8) # Default to Red
118
 
119
+ # Apply recoloring logic
120
+ if design_present:
121
+ print("Design detected! Coloring only non-design areas.")
122
+ img_recolored = recolor_dress(img_np, mask, new_color_bgr, edges)
123
+ else:
124
+ print("No design detected. Coloring entire dress.")
125
+ img_recolored = recolor_dress(img_np, mask, new_color_bgr, np.zeros_like(mask)) # No design mask
 
 
 
 
 
 
126
 
127
  return Image.fromarray(img_recolored)
128
 
 
131
  fn=change_dress_color,
132
  inputs=[
133
  gr.Image(type="filepath", label="Upload Dress Image"),
134
+ gr.Radio(["Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black"], label="Choose New Dress Color")
135
  ],
136
  outputs=gr.Image(type="pil", label="Color Changed Dress"),
137
  title="Dress Color Changer",
138
+ description="Upload an image of a dress and select a new color to change its appearance naturally while preserving designs."
139
  )
140
 
141
  if __name__ == "__main__":