sana-zero / tools /metrics /dpg_bench /compute_dpg_bench.py
gen6scp's picture
Patched codes for ZeroGPU
d643072
import argparse
import os
import os.path as osp
import sys
import time
import warnings
from collections import defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from accelerate import Accelerator
from accelerate.utils import gather_object
from PIL import Image
from tqdm import tqdm
warnings.filterwarnings("ignore") # ignore warning
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent.parent.parent))
from tools.metrics.utils import tracker
def parse_args():
parser = argparse.ArgumentParser(description="DPG-Bench evaluation.")
parser.add_argument("--image-root-path", type=str, default=None)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument("--txt_path", type=str, default=None)
parser.add_argument("--sample_nums", type=int, default=1065)
parser.add_argument("--resolution", type=int, default=None)
parser.add_argument("--csv", type=str, default="tools/metrics/dpg_bench/dpg_bench.csv")
parser.add_argument("--res-path", type=str, default=None)
parser.add_argument("--pic-num", type=int, default=1)
parser.add_argument("--vqa-model", type=str, default="mplug")
# online logging setting
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--log_dpg", action="store_true")
parser.add_argument("--suffix_label", type=str, default="", help="used for image-reward online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for image-reward online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
return args
class MPLUG(torch.nn.Module):
def __init__(self, ckpt="damo/mplug_visual-question-answering_coco_large_en", device="gpu"):
super().__init__()
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device)
def vqa(self, image, question):
input_vqa = {"image": image, "question": question}
result = self.pipeline_vqa(input_vqa)
return result["text"]
def prepare_dpg_data(args):
previous_id = ""
current_id = ""
question_dict = dict()
category_count = defaultdict(int)
# 'item_id', 'text', 'keywords', 'proposition_id', 'dependency', 'category_broad', 'category_detailed', 'tuple', 'question_natural_language'
data = pd.read_csv(args.csv)
for i, line in data.iterrows():
if i == 0:
continue
current_id = line.item_id
qid = int(line.proposition_id)
dependency_list_str = line.dependency.split(",")
dependency_list_int = []
for d in dependency_list_str:
d_int = int(d.strip())
dependency_list_int.append(d_int)
if current_id == previous_id:
question_dict[current_id]["qid2tuple"][qid] = line.tuple
question_dict[current_id]["qid2dependency"][qid] = dependency_list_int
question_dict[current_id]["qid2question"][qid] = line.question_natural_language
else:
question_dict[current_id] = dict(
qid2tuple={qid: line.tuple},
qid2dependency={qid: dependency_list_int},
qid2question={qid: line.question_natural_language},
)
category = line.question_natural_language.split("(")[0].strip()
category_count[category] += 1
previous_id = current_id
return question_dict
def crop_image(input_image, crop_tuple=None):
if crop_tuple is None:
return input_image
cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3]))
return cropped_image
def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution):
generated_image = Image.open(image_path)
crop_tuples_list = [
(0, 0, resolution, resolution),
(resolution, 0, resolution * 2, resolution),
(0, resolution, resolution, resolution * 2),
(resolution, resolution, resolution * 2, resolution * 2),
]
crop_tuples = crop_tuples_list[: args.pic_num]
key = osp.basename(image_path).split(".")[0]
value = question_dict.get(key, None)
qid2tuple = value["qid2tuple"]
qid2question = value["qid2question"]
qid2dependency = value["qid2dependency"]
qid2answer = dict()
qid2scores = dict()
qid2validity = dict()
scores = []
for crop_tuple in crop_tuples:
cropped_image = crop_image(generated_image, crop_tuple)
for id, question in qid2question.items():
answer = vqa_model.vqa(cropped_image, question)
qid2answer[id] = answer
qid2scores[id] = float(answer == "yes")
with open(args.res_path.replace(".txt", "_detail.txt"), "a") as f:
f.write(image_path + ", " + str(crop_tuple) + ", " + question + ", " + answer + "\n")
qid2scores_orig = qid2scores.copy()
for id, parent_ids in qid2dependency.items():
# zero-out scores if parent questions are answered 'no'
any_parent_answered_no = False
for parent_id in parent_ids:
if parent_id == 0:
continue
if qid2scores[parent_id] == 0:
any_parent_answered_no = True
break
if any_parent_answered_no:
qid2scores[id] = 0
qid2validity[id] = False
else:
qid2validity[id] = True
score = sum(qid2scores.values()) / len(qid2scores)
scores.append(score)
average_score = sum(scores) / len(scores)
with open(args.res_path, "a") as f:
f.write(image_path + ", " + ", ".join(str(i) for i in scores) + ", " + str(average_score) + "\n")
return average_score, qid2tuple, qid2scores_orig
def main():
accelerator = Accelerator()
question_dict = prepare_dpg_data(args)
txt_path = args.txt_path if args.txt_path is not None else args.image_root_path
args.image_root_path = osp.join(args.image_root_path, args.exp_name)
sample_nums = args.sample_nums
args.res_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results.txt")
save_txt_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results_simple.txt")
if os.path.exists(save_txt_path):
with open(save_txt_path) as f:
dpg_value = f.readlines()[0].strip()
print(f"DPG-Bench: {dpg_value}: {args.exp_name}")
return {args.exp_name: float(dpg_value)}
if accelerator.is_main_process:
with open(args.res_path, "w") as f:
pass
with open(args.res_path.replace(".txt", "_detail.txt"), "w") as f:
pass
device = str(accelerator.device)
if args.vqa_model == "mplug":
vqa_model = MPLUG(device=device)
else:
raise NotImplementedError
vqa_model = accelerator.prepare(vqa_model)
vqa_model = getattr(vqa_model, "module", vqa_model)
filename_list = os.listdir(args.image_root_path)
num_each_rank = len(filename_list) / accelerator.num_processes
local_rank = accelerator.process_index
local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)]
local_scores = []
local_category2scores = defaultdict(list)
model_id = osp.basename(args.image_root_path)
print(f"Start to conduct evaluation of {model_id}")
for fn in tqdm(local_filename_list):
image_path = osp.join(args.image_root_path, fn)
try:
# compute score of one sample
score, qid2tuple, qid2scores = compute_dpg_one_sample(
args=args,
question_dict=question_dict,
image_path=image_path,
vqa_model=vqa_model,
resolution=args.resolution,
)
local_scores.append(score)
# summarize scores by categoris
for qid in qid2tuple.keys():
category = qid2tuple[qid].split("(")[0].strip()
qid_score = qid2scores[qid]
local_category2scores[category].append(qid_score)
except Exception as e:
print("Failed filename:", fn, e)
continue
accelerator.wait_for_everyone()
global_dpg_scores = gather_object(local_scores)
mean_dpg_score = np.mean(global_dpg_scores)
global_categories = gather_object(list(local_category2scores.keys()))
global_categories = set(global_categories)
global_category2scores = dict()
global_average_scores = []
for category in global_categories:
local_category_scores = local_category2scores.get(category, [])
global_category2scores[category] = gather_object(local_category_scores)
global_average_scores.extend(gather_object(local_category_scores))
global_category2scores_l1 = defaultdict(list)
for category in global_categories:
l1_category = category.split("-")[0].strip()
global_category2scores_l1[l1_category].extend(global_category2scores[category])
time.sleep(3)
if accelerator.is_main_process:
output = f"Model: {model_id}\n"
output += "L1 category scores:\n"
for l1_category in global_category2scores_l1.keys():
output += f"\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n"
output += "L2 category scores:\n"
for category in sorted(global_categories):
output += f"\t{category}: {np.mean(global_category2scores[category]) * 100}\n"
output += f"Image path: {args.image_root_path}\n"
output += f"Save results to: {args.res_path}\n"
output += f"DPG-Bench score: {mean_dpg_score * 100}"
with open(args.res_path, "a") as f:
f.write(output + "\n")
print(output)
if accelerator.is_main_process:
with open(save_txt_path, "w") as file:
file.write(str(mean_dpg_score * 100))
return {args.exp_name: mean_dpg_score * 100}
if __name__ == "__main__":
args = parse_args()
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
dpg_result = main()
if args.log_dpg:
tracker(args, dpg_result, args.suffix_label, pattern=args.tracker_pattern, metric="DPG")