|
import argparse |
|
import os |
|
import os.path as osp |
|
import sys |
|
import time |
|
import warnings |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
from accelerate import Accelerator |
|
from accelerate.utils import gather_object |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
warnings.filterwarnings("ignore") |
|
current_file_path = Path(__file__).resolve() |
|
sys.path.insert(0, str(current_file_path.parent.parent.parent.parent)) |
|
|
|
from tools.metrics.utils import tracker |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="DPG-Bench evaluation.") |
|
parser.add_argument("--image-root-path", type=str, default=None) |
|
parser.add_argument("--exp_name", type=str, default="Sana") |
|
parser.add_argument("--txt_path", type=str, default=None) |
|
parser.add_argument("--sample_nums", type=int, default=1065) |
|
parser.add_argument("--resolution", type=int, default=None) |
|
parser.add_argument("--csv", type=str, default="tools/metrics/dpg_bench/dpg_bench.csv") |
|
parser.add_argument("--res-path", type=str, default=None) |
|
parser.add_argument("--pic-num", type=int, default=1) |
|
parser.add_argument("--vqa-model", type=str, default="mplug") |
|
|
|
|
|
parser.add_argument("--log_metric", type=str, default="metric") |
|
parser.add_argument("--gpu_id", type=int, default=0) |
|
parser.add_argument("--log_dpg", action="store_true") |
|
parser.add_argument("--suffix_label", type=str, default="", help="used for image-reward online log") |
|
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for image-reward online log") |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default=None, |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="t2i-evit-baseline", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
parser.add_argument( |
|
"--name", |
|
type=str, |
|
default="baseline", |
|
help=("Wandb Project Name"), |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
class MPLUG(torch.nn.Module): |
|
def __init__(self, ckpt="damo/mplug_visual-question-answering_coco_large_en", device="gpu"): |
|
super().__init__() |
|
from modelscope.pipelines import pipeline |
|
from modelscope.utils.constant import Tasks |
|
|
|
self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device) |
|
|
|
def vqa(self, image, question): |
|
input_vqa = {"image": image, "question": question} |
|
result = self.pipeline_vqa(input_vqa) |
|
return result["text"] |
|
|
|
|
|
def prepare_dpg_data(args): |
|
previous_id = "" |
|
current_id = "" |
|
question_dict = dict() |
|
category_count = defaultdict(int) |
|
|
|
data = pd.read_csv(args.csv) |
|
for i, line in data.iterrows(): |
|
if i == 0: |
|
continue |
|
|
|
current_id = line.item_id |
|
qid = int(line.proposition_id) |
|
dependency_list_str = line.dependency.split(",") |
|
dependency_list_int = [] |
|
for d in dependency_list_str: |
|
d_int = int(d.strip()) |
|
dependency_list_int.append(d_int) |
|
|
|
if current_id == previous_id: |
|
question_dict[current_id]["qid2tuple"][qid] = line.tuple |
|
question_dict[current_id]["qid2dependency"][qid] = dependency_list_int |
|
question_dict[current_id]["qid2question"][qid] = line.question_natural_language |
|
else: |
|
question_dict[current_id] = dict( |
|
qid2tuple={qid: line.tuple}, |
|
qid2dependency={qid: dependency_list_int}, |
|
qid2question={qid: line.question_natural_language}, |
|
) |
|
|
|
category = line.question_natural_language.split("(")[0].strip() |
|
category_count[category] += 1 |
|
|
|
previous_id = current_id |
|
|
|
return question_dict |
|
|
|
|
|
def crop_image(input_image, crop_tuple=None): |
|
if crop_tuple is None: |
|
return input_image |
|
|
|
cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3])) |
|
|
|
return cropped_image |
|
|
|
|
|
def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution): |
|
generated_image = Image.open(image_path) |
|
crop_tuples_list = [ |
|
(0, 0, resolution, resolution), |
|
(resolution, 0, resolution * 2, resolution), |
|
(0, resolution, resolution, resolution * 2), |
|
(resolution, resolution, resolution * 2, resolution * 2), |
|
] |
|
|
|
crop_tuples = crop_tuples_list[: args.pic_num] |
|
key = osp.basename(image_path).split(".")[0] |
|
value = question_dict.get(key, None) |
|
qid2tuple = value["qid2tuple"] |
|
qid2question = value["qid2question"] |
|
qid2dependency = value["qid2dependency"] |
|
|
|
qid2answer = dict() |
|
qid2scores = dict() |
|
qid2validity = dict() |
|
|
|
scores = [] |
|
for crop_tuple in crop_tuples: |
|
cropped_image = crop_image(generated_image, crop_tuple) |
|
for id, question in qid2question.items(): |
|
answer = vqa_model.vqa(cropped_image, question) |
|
qid2answer[id] = answer |
|
qid2scores[id] = float(answer == "yes") |
|
with open(args.res_path.replace(".txt", "_detail.txt"), "a") as f: |
|
f.write(image_path + ", " + str(crop_tuple) + ", " + question + ", " + answer + "\n") |
|
qid2scores_orig = qid2scores.copy() |
|
|
|
for id, parent_ids in qid2dependency.items(): |
|
|
|
any_parent_answered_no = False |
|
for parent_id in parent_ids: |
|
if parent_id == 0: |
|
continue |
|
if qid2scores[parent_id] == 0: |
|
any_parent_answered_no = True |
|
break |
|
if any_parent_answered_no: |
|
qid2scores[id] = 0 |
|
qid2validity[id] = False |
|
else: |
|
qid2validity[id] = True |
|
|
|
score = sum(qid2scores.values()) / len(qid2scores) |
|
scores.append(score) |
|
average_score = sum(scores) / len(scores) |
|
with open(args.res_path, "a") as f: |
|
f.write(image_path + ", " + ", ".join(str(i) for i in scores) + ", " + str(average_score) + "\n") |
|
|
|
return average_score, qid2tuple, qid2scores_orig |
|
|
|
|
|
def main(): |
|
|
|
accelerator = Accelerator() |
|
|
|
question_dict = prepare_dpg_data(args) |
|
|
|
txt_path = args.txt_path if args.txt_path is not None else args.image_root_path |
|
args.image_root_path = osp.join(args.image_root_path, args.exp_name) |
|
sample_nums = args.sample_nums |
|
args.res_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results.txt") |
|
save_txt_path = osp.join(txt_path, f"{args.exp_name}_sample{sample_nums}_dpg_results_simple.txt") |
|
if os.path.exists(save_txt_path): |
|
with open(save_txt_path) as f: |
|
dpg_value = f.readlines()[0].strip() |
|
print(f"DPG-Bench: {dpg_value}: {args.exp_name}") |
|
return {args.exp_name: float(dpg_value)} |
|
|
|
if accelerator.is_main_process: |
|
with open(args.res_path, "w") as f: |
|
pass |
|
with open(args.res_path.replace(".txt", "_detail.txt"), "w") as f: |
|
pass |
|
|
|
device = str(accelerator.device) |
|
if args.vqa_model == "mplug": |
|
vqa_model = MPLUG(device=device) |
|
else: |
|
raise NotImplementedError |
|
vqa_model = accelerator.prepare(vqa_model) |
|
vqa_model = getattr(vqa_model, "module", vqa_model) |
|
|
|
filename_list = os.listdir(args.image_root_path) |
|
num_each_rank = len(filename_list) / accelerator.num_processes |
|
local_rank = accelerator.process_index |
|
local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)] |
|
|
|
local_scores = [] |
|
local_category2scores = defaultdict(list) |
|
model_id = osp.basename(args.image_root_path) |
|
print(f"Start to conduct evaluation of {model_id}") |
|
for fn in tqdm(local_filename_list): |
|
image_path = osp.join(args.image_root_path, fn) |
|
try: |
|
|
|
score, qid2tuple, qid2scores = compute_dpg_one_sample( |
|
args=args, |
|
question_dict=question_dict, |
|
image_path=image_path, |
|
vqa_model=vqa_model, |
|
resolution=args.resolution, |
|
) |
|
local_scores.append(score) |
|
|
|
|
|
for qid in qid2tuple.keys(): |
|
category = qid2tuple[qid].split("(")[0].strip() |
|
qid_score = qid2scores[qid] |
|
local_category2scores[category].append(qid_score) |
|
|
|
except Exception as e: |
|
print("Failed filename:", fn, e) |
|
continue |
|
|
|
accelerator.wait_for_everyone() |
|
global_dpg_scores = gather_object(local_scores) |
|
mean_dpg_score = np.mean(global_dpg_scores) |
|
|
|
global_categories = gather_object(list(local_category2scores.keys())) |
|
global_categories = set(global_categories) |
|
global_category2scores = dict() |
|
global_average_scores = [] |
|
for category in global_categories: |
|
local_category_scores = local_category2scores.get(category, []) |
|
global_category2scores[category] = gather_object(local_category_scores) |
|
global_average_scores.extend(gather_object(local_category_scores)) |
|
|
|
global_category2scores_l1 = defaultdict(list) |
|
for category in global_categories: |
|
l1_category = category.split("-")[0].strip() |
|
global_category2scores_l1[l1_category].extend(global_category2scores[category]) |
|
|
|
time.sleep(3) |
|
if accelerator.is_main_process: |
|
output = f"Model: {model_id}\n" |
|
|
|
output += "L1 category scores:\n" |
|
for l1_category in global_category2scores_l1.keys(): |
|
output += f"\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n" |
|
|
|
output += "L2 category scores:\n" |
|
for category in sorted(global_categories): |
|
output += f"\t{category}: {np.mean(global_category2scores[category]) * 100}\n" |
|
|
|
output += f"Image path: {args.image_root_path}\n" |
|
output += f"Save results to: {args.res_path}\n" |
|
output += f"DPG-Bench score: {mean_dpg_score * 100}" |
|
with open(args.res_path, "a") as f: |
|
f.write(output + "\n") |
|
print(output) |
|
|
|
if accelerator.is_main_process: |
|
with open(save_txt_path, "w") as file: |
|
file.write(str(mean_dpg_score * 100)) |
|
|
|
return {args.exp_name: mean_dpg_score * 100} |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name) |
|
|
|
dpg_result = main() |
|
|
|
if args.log_dpg: |
|
tracker(args, dpg_result, args.suffix_label, pattern=args.tracker_pattern, metric="DPG") |
|
|