Spaces:
Running
Running
show loading time when inference api request out of time
#55
by
ZeroCommand
- opened
- app_text_classification.py +5 -1
- config.yaml +3 -1
- text_classification.py +35 -18
- text_classification_ui_helpers.py +27 -7
app_text_classification.py
CHANGED
|
@@ -128,7 +128,11 @@ def get_demo():
|
|
| 128 |
fn=get_related_datasets_from_leaderboard,
|
| 129 |
inputs=[model_id_input],
|
| 130 |
outputs=[dataset_id_input],
|
| 131 |
-
).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
gr.on(
|
| 134 |
triggers=[dataset_id_input.input],
|
|
|
|
| 128 |
fn=get_related_datasets_from_leaderboard,
|
| 129 |
inputs=[model_id_input],
|
| 130 |
outputs=[dataset_id_input],
|
| 131 |
+
).then(
|
| 132 |
+
fn=check_dataset,
|
| 133 |
+
inputs=[dataset_id_input],
|
| 134 |
+
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
| 135 |
+
)
|
| 136 |
|
| 137 |
gr.on(
|
| 138 |
triggers=[dataset_id_input.input],
|
config.yaml
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
configuration:
|
| 2 |
ethical_bias:
|
| 3 |
-
threshold: 0.
|
|
|
|
|
|
|
| 4 |
detectors:
|
| 5 |
- ethical_bias
|
| 6 |
- text_perturbation
|
|
|
|
| 1 |
configuration:
|
| 2 |
ethical_bias:
|
| 3 |
+
threshold: 0.05
|
| 4 |
+
performance:
|
| 5 |
+
alpha: 0.05
|
| 6 |
detectors:
|
| 7 |
- ethical_bias
|
| 8 |
- text_perturbation
|
text_classification.py
CHANGED
|
@@ -7,12 +7,16 @@ import pandas as pd
|
|
| 7 |
from transformers import pipeline
|
| 8 |
import requests
|
| 9 |
import os
|
| 10 |
-
import time
|
| 11 |
|
|
|
|
| 12 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
| 13 |
|
| 14 |
logger = logging.getLogger(__file__)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def get_labels_and_features_from_dataset(ds):
|
| 18 |
try:
|
|
@@ -76,19 +80,18 @@ def hf_inference_api(model_id, hf_token, payload):
|
|
| 76 |
)
|
| 77 |
url = f"{hf_inference_api_endpoint}/models/{model_id}"
|
| 78 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
time.sleep(2)
|
| 92 |
|
| 93 |
def check_model_pipeline(model_id):
|
| 94 |
try:
|
|
@@ -262,6 +265,12 @@ def check_dataset_features_validity(d_id, config, split):
|
|
| 262 |
|
| 263 |
return df, dataset_features
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
| 267 |
# get a sample prediction from the model on the dataset
|
|
@@ -272,13 +281,21 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
| 272 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
| 273 |
if "text" not in ds.features.keys():
|
| 274 |
# Dataset does not have text column
|
| 275 |
-
prediction_input = ds[0][
|
| 276 |
else:
|
| 277 |
prediction_input = ds[0]["text"]
|
| 278 |
-
|
| 279 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 280 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
| 281 |
results = hf_inference_api(model_id, hf_token, payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
while isinstance(results, list):
|
| 283 |
if isinstance(results[0], dict):
|
| 284 |
break
|
|
@@ -287,8 +304,8 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
| 287 |
f'{result["label"]}': result["score"] for result in results
|
| 288 |
}
|
| 289 |
except Exception as e:
|
| 290 |
-
#
|
| 291 |
-
logger.
|
| 292 |
return prediction_input, None
|
| 293 |
|
| 294 |
return prediction_input, prediction_result
|
|
|
|
| 7 |
from transformers import pipeline
|
| 8 |
import requests
|
| 9 |
import os
|
|
|
|
| 10 |
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
| 13 |
|
| 14 |
logger = logging.getLogger(__file__)
|
| 15 |
|
| 16 |
+
class HuggingFaceInferenceAPIResponse:
|
| 17 |
+
def __init__(self, message):
|
| 18 |
+
self.message = message
|
| 19 |
+
|
| 20 |
|
| 21 |
def get_labels_and_features_from_dataset(ds):
|
| 22 |
try:
|
|
|
|
| 80 |
)
|
| 81 |
url = f"{hf_inference_api_endpoint}/models/{model_id}"
|
| 82 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 83 |
+
response = requests.post(url, headers=headers, json=payload)
|
| 84 |
+
if not hasattr(response, "status_code") or response.status_code != 200:
|
| 85 |
+
logger.warning(f"Request to inference API returns {response}")
|
| 86 |
+
try:
|
| 87 |
+
return response.json()
|
| 88 |
+
except Exception:
|
| 89 |
+
return {"error": response.content}
|
| 90 |
+
|
| 91 |
+
def preload_hf_inference_api(model_id):
|
| 92 |
+
payload = {"inputs": "This is a test", "options": {"use_cache": True, }}
|
| 93 |
+
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 94 |
+
hf_inference_api(model_id, hf_token, payload)
|
|
|
|
| 95 |
|
| 96 |
def check_model_pipeline(model_id):
|
| 97 |
try:
|
|
|
|
| 265 |
|
| 266 |
return df, dataset_features
|
| 267 |
|
| 268 |
+
def select_the_first_string_column(ds):
|
| 269 |
+
for feature in ds.features.keys():
|
| 270 |
+
if isinstance(ds[0][feature], str):
|
| 271 |
+
return feature
|
| 272 |
+
return None
|
| 273 |
+
|
| 274 |
|
| 275 |
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
| 276 |
# get a sample prediction from the model on the dataset
|
|
|
|
| 281 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
| 282 |
if "text" not in ds.features.keys():
|
| 283 |
# Dataset does not have text column
|
| 284 |
+
prediction_input = ds[0][select_the_first_string_column(ds)]
|
| 285 |
else:
|
| 286 |
prediction_input = ds[0]["text"]
|
| 287 |
+
|
| 288 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 289 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
| 290 |
results = hf_inference_api(model_id, hf_token, payload)
|
| 291 |
+
|
| 292 |
+
if isinstance(results, dict) and "error" in results.keys():
|
| 293 |
+
if "estimated_time" in results.keys():
|
| 294 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
| 295 |
+
f"Estimated time: {int(results['estimated_time'])}s. Please try again later.")
|
| 296 |
+
return prediction_input, HuggingFaceInferenceAPIResponse(
|
| 297 |
+
f"Inference Error: {results['error']}.")
|
| 298 |
+
|
| 299 |
while isinstance(results, list):
|
| 300 |
if isinstance(results[0], dict):
|
| 301 |
break
|
|
|
|
| 304 |
f'{result["label"]}': result["score"] for result in results
|
| 305 |
}
|
| 306 |
except Exception as e:
|
| 307 |
+
# inference api prediction failed, show the error message
|
| 308 |
+
logger.error(f"Get example prediction failed {e}")
|
| 309 |
return prediction_input, None
|
| 310 |
|
| 311 |
return prediction_input, prediction_result
|
text_classification_ui_helpers.py
CHANGED
|
@@ -12,8 +12,10 @@ from io_utils import read_column_mapping, write_column_mapping
|
|
| 12 |
from run_jobs import save_job_to_pipe
|
| 13 |
from text_classification import (
|
| 14 |
check_model_task,
|
|
|
|
| 15 |
get_example_prediction,
|
| 16 |
get_labels_and_features_from_dataset,
|
|
|
|
| 17 |
)
|
| 18 |
from wordings import (
|
| 19 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
|
@@ -159,9 +161,10 @@ def precheck_model_ds_enable_example_btn(
|
|
| 159 |
model_id, dataset_id, dataset_config, dataset_split
|
| 160 |
):
|
| 161 |
model_task = check_model_task(model_id)
|
|
|
|
| 162 |
if model_task is None or model_task != "text-classification":
|
| 163 |
gr.Warning("Please check your model.")
|
| 164 |
-
return gr.update(
|
| 165 |
|
| 166 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
| 167 |
return (gr.update(), gr.update(), "")
|
|
@@ -182,8 +185,6 @@ def precheck_model_ds_enable_example_btn(
|
|
| 182 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
| 183 |
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
def align_columns_and_show_prediction(
|
| 188 |
model_id,
|
| 189 |
dataset_id,
|
|
@@ -209,12 +210,31 @@ def align_columns_and_show_prediction(
|
|
| 209 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
| 210 |
]
|
| 211 |
|
| 212 |
-
|
| 213 |
-
prediction_input, prediction_output = get_example_prediction(
|
| 214 |
model_id, dataset_id, dataset_config, dataset_split
|
| 215 |
)
|
| 216 |
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
| 220 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
|
@@ -255,7 +275,7 @@ def align_columns_and_show_prediction(
|
|
| 255 |
|
| 256 |
return (
|
| 257 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 258 |
-
gr.update(value=
|
| 259 |
gr.update(visible=True, open=False),
|
| 260 |
gr.update(interactive=(run_inference and inference_token != "")),
|
| 261 |
"",
|
|
|
|
| 12 |
from run_jobs import save_job_to_pipe
|
| 13 |
from text_classification import (
|
| 14 |
check_model_task,
|
| 15 |
+
preload_hf_inference_api,
|
| 16 |
get_example_prediction,
|
| 17 |
get_labels_and_features_from_dataset,
|
| 18 |
+
HuggingFaceInferenceAPIResponse,
|
| 19 |
)
|
| 20 |
from wordings import (
|
| 21 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
|
|
|
| 161 |
model_id, dataset_id, dataset_config, dataset_split
|
| 162 |
):
|
| 163 |
model_task = check_model_task(model_id)
|
| 164 |
+
preload_hf_inference_api(model_id)
|
| 165 |
if model_task is None or model_task != "text-classification":
|
| 166 |
gr.Warning("Please check your model.")
|
| 167 |
+
return (gr.update(), gr.update(),"")
|
| 168 |
|
| 169 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
| 170 |
return (gr.update(), gr.update(), "")
|
|
|
|
| 185 |
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
|
| 186 |
|
| 187 |
|
|
|
|
|
|
|
| 188 |
def align_columns_and_show_prediction(
|
| 189 |
model_id,
|
| 190 |
dataset_id,
|
|
|
|
| 210 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
| 211 |
]
|
| 212 |
|
| 213 |
+
prediction_input, prediction_response = get_example_prediction(
|
|
|
|
| 214 |
model_id, dataset_id, dataset_config, dataset_split
|
| 215 |
)
|
| 216 |
|
| 217 |
+
if prediction_input is None or prediction_response is None:
|
| 218 |
+
return (
|
| 219 |
+
gr.update(visible=False),
|
| 220 |
+
gr.update(visible=False),
|
| 221 |
+
gr.update(visible=False, open=False),
|
| 222 |
+
gr.update(interactive=False),
|
| 223 |
+
"",
|
| 224 |
+
*dropdown_placement,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
| 228 |
+
return (
|
| 229 |
+
gr.update(visible=False),
|
| 230 |
+
gr.update(visible=False),
|
| 231 |
+
gr.update(visible=False, open=False),
|
| 232 |
+
gr.update(interactive=False),
|
| 233 |
+
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
|
| 234 |
+
*dropdown_placement,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
model_labels = list(prediction_response.keys())
|
| 238 |
|
| 239 |
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
|
| 240 |
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
|
|
|
|
| 275 |
|
| 276 |
return (
|
| 277 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
| 278 |
+
gr.update(value=prediction_response, visible=True),
|
| 279 |
gr.update(visible=True, open=False),
|
| 280 |
gr.update(interactive=(run_inference and inference_token != "")),
|
| 281 |
"",
|