Create Job_application.py

#8
by Geethuzzz - opened
Files changed (1) hide show
  1. Job_application.py +166 -0
Job_application.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import required libraries
2
+ import os
3
+ import streamlit as st
4
+ from crewai import Agent, Task, Crew, LLM
5
+ from crewai_tools import (
6
+ SerperDevTool,
7
+ FileReadTool,
8
+ MDXSearchTool,
9
+ ScrapeWebsiteTool
10
+ )
11
+ from embedchain import App
12
+ from embedchain.embedder import GeminiEmbedder
13
+
14
+ # Set up API keys
15
+ gemini_api_key = "AIzaSyDzsGJCnE3017fYnOM0Fp_aWs4YtN4d4TI"
16
+ serper_api_key = "b86545fdabc35dcb13fd8cc0a9b88c3a17b6dc89"
17
+
18
+ # Configure environment variables
19
+ os.environ["GEMINIAI_API_KEY"] = gemini_api_key
20
+ os.environ["SERPER_API_KEY"] = serper_api_key
21
+
22
+ # Initialize Gemini embedding model
23
+ gemini_embedder = GeminiEmbedder(api_key=gemini_api_key)
24
+
25
+ # Initialize EmbedChain App with Gemini
26
+ embedchain_app = App(embedding_model=gemini_embedder)
27
+
28
+ # Initialize Tools
29
+ search_tool = SerperDevTool()
30
+ scrape_tool = ScrapeWebsiteTool()
31
+ resume_file_path = 'resume.md' # Use a relative or dynamic file path
32
+ read_resume = FileReadTool(file_path=resume_file_path)
33
+ semantic_search_resume = MDXSearchTool(mdx=resume_file_path, embedding_model=gemini_embedder, app=embedchain_app)
34
+
35
+ # Agent 1: Researcher
36
+ researcher = Agent(
37
+ role="Tech Job Researcher",
38
+ goal="Analyze job postings and extract required qualifications.",
39
+ tools=[scrape_tool, search_tool],
40
+ verbose=True,
41
+ backstory=(
42
+ "An expert in analyzing job postings, you identify essential skills "
43
+ "and qualifications required for job applications."
44
+ )
45
+ )
46
+
47
+ # Agent 2: Profiler
48
+ profiler = Agent(
49
+ role="Personal Profiler for Engineers",
50
+ goal="Create a detailed profile for job applicants.",
51
+ tools=[read_resume, semantic_search_resume],
52
+ verbose=True,
53
+ backstory=(
54
+ "Specializing in building comprehensive profiles, you extract and "
55
+ "synthesize information to create impactful resumes."
56
+ )
57
+ )
58
+
59
+ # Agent 3: Resume Strategist
60
+ resume_strategist = Agent(
61
+ role="Resume Strategist for Engineers",
62
+ goal="Refine resumes to align with job requirements.",
63
+ tools=[read_resume, semantic_search_resume],
64
+ verbose=True,
65
+ backstory=(
66
+ "Your expertise lies in crafting resumes that highlight key skills "
67
+ "and experiences to match job requirements."
68
+ )
69
+ )
70
+
71
+ # Agent 4: Interview Preparer
72
+ interview_preparer = Agent(
73
+ role="Interview Preparer",
74
+ goal="Generate potential interview questions and talking points.",
75
+ tools=[read_resume, semantic_search_resume],
76
+ verbose=True,
77
+ backstory=(
78
+ "You prepare candidates for interviews by formulating relevant questions "
79
+ "and talking points based on the job and their profile."
80
+ )
81
+ )
82
+
83
+ # Define Tasks
84
+ research_task = Task(
85
+ description="Analyze the job posting URL to extract key skills, qualifications, and requirements.",
86
+ expected_output="A structured list of job requirements.",
87
+ agent=researcher,
88
+ async_execution=True
89
+ )
90
+
91
+ profile_task = Task(
92
+ description="Create a detailed profile from the resume and personal write-up.",
93
+ expected_output="A comprehensive profile document.",
94
+ agent=profiler,
95
+ async_execution=True
96
+ )
97
+
98
+ resume_strategy_task = Task(
99
+ description="Tailor the resume based on job requirements and personal profile.",
100
+ expected_output="An updated resume tailored to the job.",
101
+ output_file="tailored_resume.md",
102
+ context=[research_task, profile_task],
103
+ agent=resume_strategist
104
+ )
105
+
106
+ interview_preparation_task = Task(
107
+ description="Generate interview questions and talking points based on the tailored resume.",
108
+ expected_output="A document with key interview questions and talking points.",
109
+ output_file="interview_materials.md",
110
+ context=[research_task, profile_task, resume_strategy_task],
111
+ agent=interview_preparer
112
+ )
113
+
114
+ # Crew Setup
115
+ job_application_crew = Crew(
116
+ agents=[researcher, profiler, resume_strategist, interview_preparer],
117
+ tasks=[research_task, profile_task, resume_strategy_task, interview_preparation_task],
118
+ verbose=True
119
+ )
120
+
121
+ # Streamlit Application
122
+ st.title("AI-Powered Job Application Assistant")
123
+
124
+ # User Inputs
125
+ st.header("Provide Job Details")
126
+ job_posting_url = st.text_input("Job Posting URL", "https://jobs.lever.co/AIFund/6c82e23e-d954-4dd8-a734-c0c2c5ee00f1")
127
+ github_url = st.text_input("GitHub Profile URL", "https://github.com/joaomdmoura")
128
+ personal_writeup = st.text_area(
129
+ "Personal Writeup",
130
+ """Noah is an accomplished Software Engineering Leader with 18 years of experience,
131
+ specializing in managing remote and in-office teams. He holds an MBA and has a strong
132
+ background in AI and data science. Noah has successfully led major tech initiatives
133
+ and startups, driving innovation and growth."""
134
+ )
135
+
136
+ # File Upload for Resume
137
+ st.header("Upload Resume")
138
+ uploaded_resume = st.file_uploader("Upload your resume (Markdown format)", type=["md"])
139
+ if uploaded_resume:
140
+ resume_file_path = os.path.join("uploads", uploaded_resume.name)
141
+ with open(resume_file_path, "wb") as f:
142
+ f.write(uploaded_resume.getbuffer())
143
+ st.success("Resume uploaded successfully!")
144
+
145
+ # Start Job Application Process
146
+ if st.button("Start Job Application Process"):
147
+ job_application_inputs = {
148
+ 'job_posting_url': job_posting_url,
149
+ 'github_url': github_url,
150
+ 'personal_writeup': personal_writeup
151
+ }
152
+
153
+ # Run the Crew
154
+ result = job_application_crew.kickoff(inputs=job_application_inputs)
155
+ st.success("Job Application Process Completed!")
156
+
157
+ # Display Results
158
+ if os.path.exists("tailored_resume.md"):
159
+ st.header("Generated Tailored Resume")
160
+ with open("tailored_resume.md", "r") as f:
161
+ st.markdown(f.read(), unsafe_allow_html=True)
162
+
163
+ if os.path.exists("interview_materials.md"):
164
+ st.header("Generated Interview Materials")
165
+ with open("interview_materials.md", "r") as f:
166
+ st.markdown(f.read(), unsafe_allow_html=True)