Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import numpy as np | |
import einops | |
class CodecManipulator(object): | |
r""" | |
**mm tokenizer v0.1** | |
see codeclm/hf/mm_tokenizer_v0.1_hf/id2vocab.json | |
text tokens: | |
llama tokenizer 0~31999 | |
special tokens: "32000": "<EOD>", "32001": "<SOA>", "32002": "<EOA>", "32003": "<SOI>", "32004": "<EOI>", "32005": "<SOV>", "32006": "<EOV>", "32007": "<s_local>", "32008": "<e_local>", "32009": "<s_global>", "32010": "<e_global>", "32011": "<semantic>", "32012": "<acoustic>", "32013": "<low_level>", "32014": "<dac_16k>", "32015": "<dac_44k>", "32016": "<xcodec>", "32017": "<placeholder>", "32018": "<semantic_mert>", "32019": "<semantic_hubert>", "32020": "<visual>", "32021": "<semanticodec>" | |
mm tokens: | |
dac_16k: 4 codebook, 1024 vocab, 32022 - 36117 | |
dac_44k: 9 codebook, 1024 vocab, 36118 - 45333 | |
xcodec: 12 codebook, 1024 vocab, 45334 - 57621 | |
semantic mert: 1024, 57622 - 58645 | |
semantic hubert: 512, 58646 - 59157 | |
visual: 64000, not included in v0.1 | |
semanticodec 100tps 16384: semantic=16384, 59158 - 75541, acoustic=8192, 75542 - 83733 | |
""" | |
def __init__(self, codec_type, quantizer_begin=None, n_quantizer=None, teacher_forcing=False, data_feature="codec"): | |
self.codec_type = codec_type | |
self.mm_v0_2_cfg = { | |
"dac16k": {"codebook_size": 1024, "num_codebooks": 4, "global_offset": 32022, "sep": ["<dac_16k>"], "fps": 50}, | |
"dac44k": {"codebook_size": 1024, "num_codebooks": 9, "global_offset": 36118, "sep": ["<dac_44k>"]}, | |
"xcodec": {"codebook_size": 1024, "num_codebooks": 12, "global_offset": 45334, "sep": ["<xcodec>"], "fps": 50}, | |
"mert": {"codebook_size": 1024, "global_offset": 57622, "sep": ["<semantic_mert>"]}, | |
"hubert": {"codebook_size": 512, "global_offset": 58646, "sep": ["<semantic_hubert>"]}, | |
"semantic/s": {"codebook_size": 16384, "num_codebooks": 1, "global_offset": 59158, "sep": ["<semanticodec>", "<semantic>"]}, | |
"semantic/a": {"codebook_size": 8192, "num_codebooks": 1, "global_offset": 75542, "sep": ["<semanticodec>", "<acoustic>"]}, | |
"semanticodec": {"codebook_size": [16384, 8192], "num_codebooks": 2, "global_offset": 59158, "sep": ["<semanticodec>"], "fps": 50}, | |
"special_tokens": { | |
'<EOD>': 32000, '<SOA>': 32001, '<EOA>': 32002, '<SOI>': 32003, '<EOI>': 32004, '<SOV>': 32005, '<EOV>': 32006, '<s_local>': 32007, '<e_local>': 32008, '<s_global>': 32009, '<e_global>': 32010, '<semantic>': 32011, '<acoustic>': 32012, '<stage_1>': 32013, '<dac_16k>': 32014, '<dac_44k>': 32015, '<xcodec>': 32016, '<stage_2>': 32017, '<semantic_mert>': 32018, '<semantic_hubert>': 32019, '<visual>': 32020, '<semanticodec>': 32021 | |
}, | |
"metadata": { | |
"len": 83734, | |
"text_range": [0, 31999], | |
"special_range": [32000, 32021], | |
"mm_range": [32022, 83733] | |
}, | |
"codec_range": { | |
"dac16k": [32022, 36117], | |
"dac44k": [36118, 45333], | |
"xcodec": [45334, 57621], | |
# "hifi16k": [53526, 57621], | |
"mert": [57622, 58645], | |
"hubert": [58646, 59157], | |
"semantic/s": [59158, 75541], | |
"semantic/a": [75542, 83733], | |
"semanticodec": [59158, 83733] | |
} | |
} | |
self.sep = self.mm_v0_2_cfg[self.codec_type]["sep"] | |
self.sep_ids = [self.mm_v0_2_cfg["special_tokens"][s] for s in self.sep] | |
self.codebook_size = self.mm_v0_2_cfg[self.codec_type]["codebook_size"] | |
self.num_codebooks = self.mm_v0_2_cfg[self.codec_type]["num_codebooks"] | |
self.global_offset = self.mm_v0_2_cfg[self.codec_type]["global_offset"] | |
self.fps = self.mm_v0_2_cfg[self.codec_type]["fps"] if "fps" in self.mm_v0_2_cfg[self.codec_type] else None | |
self.quantizer_begin = quantizer_begin if quantizer_begin is not None else 0 | |
self.n_quantizer = n_quantizer if n_quantizer is not None else self.num_codebooks | |
self.teacher_forcing = teacher_forcing | |
self.data_feature = data_feature | |
def offset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4): | |
""" | |
x: (K, T) | |
""" | |
if isinstance(codebook_size, int): | |
assert x.max() < codebook_size, f"max(x)={x.max()}, codebook_size={codebook_size}" | |
elif isinstance(codebook_size, list): | |
for i, cs in enumerate(codebook_size): | |
assert x[i].max() < cs, f"max(x)={x[i].max()}, codebook_size={cs}, layer_id={i}" | |
else: | |
raise ValueError(f"codebook_size={codebook_size}") | |
assert x.min() >= 0, f"min(x)={x.min()}" | |
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \ | |
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}" | |
_x = x.copy() | |
_x = _x.astype(np.uint32) | |
cum_offset = 0 | |
quantizer_begin = self.quantizer_begin | |
quantizer_end = quantizer_begin+self.n_quantizer | |
for k in range(self.quantizer_begin, quantizer_end): # k: quantizer_begin to quantizer_end - 1 | |
if isinstance(codebook_size, int): | |
_x[k] += global_offset + k * codebook_size | |
elif isinstance(codebook_size, list): | |
_x[k] += global_offset + cum_offset | |
cum_offset += codebook_size[k] | |
else: | |
raise ValueError(f"codebook_size={codebook_size}") | |
return _x[quantizer_begin:quantizer_end] | |
def unoffset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4): | |
""" | |
x: (K, T) | |
""" | |
if isinstance(codebook_size, int): | |
assert x.max() < global_offset + codebook_size * num_codebooks, f"max(x)={x.max()}, codebook_size={codebook_size}" | |
elif isinstance(codebook_size, list): | |
assert x.max() < global_offset + sum(codebook_size), f"max(x)={x.max()}, codebook_size={codebook_size}" | |
assert x.min() >= global_offset, f"min(x)={x.min()}, global_offset={global_offset}" | |
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \ | |
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}" | |
_x = x.copy() | |
_x = _x.astype(np.uint32) | |
cum_offset = 0 | |
quantizer_begin = self.quantizer_begin | |
quantizer_end = quantizer_begin+self.n_quantizer | |
for k in range(quantizer_begin, quantizer_end): | |
if isinstance(codebook_size, int): | |
_x[k-quantizer_begin] -= global_offset + k * codebook_size | |
elif isinstance(codebook_size, list): | |
_x[k-quantizer_begin] -= global_offset + cum_offset | |
cum_offset += codebook_size[k] | |
else: | |
raise ValueError(f"codebook_size={codebook_size}") | |
return _x | |
def flatten(self, x): | |
if len(x.shape) > 2: | |
x = x.squeeze() | |
assert x.shape[0] == self.num_codebooks or x.shape[0] == self.n_quantizer, \ | |
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}" | |
return einops.rearrange(x, 'K T -> (T K)') | |
def unflatten(self, x, n_quantizer=None): | |
x = x.squeeze() | |
assert len(x.shape) == 1 | |
assert x.shape[0] % self.num_codebooks == 0 or x.shape[0] % self.n_quantizer == 0, \ | |
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}" | |
if n_quantizer!=self.num_codebooks: | |
return einops.rearrange(x, '(T K) -> K T', K=n_quantizer) | |
return einops.rearrange(x, '(T K) -> K T', K=self.num_codebooks) | |
# def check_codec_type_from_path(self, path): | |
# if self.codec_type == "hifi16k": | |
# assert "academicodec_hifi_16k_320d_large_uni" in path | |
def get_codec_type_from_range(self, ids): | |
ids_range = [ids.min(), ids.max()] | |
codec_range = self.mm_v0_2_cfg["codec_range"] | |
for codec_type, r in codec_range.items(): | |
if ids_range[0] >= r[0] and ids_range[1] <= r[1]: | |
return codec_type | |
raise ValueError(f"ids_range={ids_range}, codec_range={codec_range}") | |
def npy2ids(self, npy): | |
if isinstance(npy, str): | |
data = np.load(npy) | |
elif isinstance(npy, np.ndarray): | |
data = npy | |
else: | |
raise ValueError(f"not supported type: {type(npy)}") | |
# data = data.squeeze() | |
assert len(data.shape)==2, f'data shape: {data.shape} is not (n_codebook, seq_len)' | |
data = self.offset_tok_ids( | |
data, | |
global_offset=self.global_offset, | |
codebook_size=self.codebook_size, | |
num_codebooks=self.num_codebooks, | |
) | |
data = self.flatten(data) | |
codec_range = self.get_codec_type_from_range(data) | |
assert codec_range == self.codec_type, f"get_codec_type_from_range(data)={codec_range}, self.codec_type={self.codec_type}" | |
data = data.tolist() | |
return data | |
def ids2npy(self, token_ids): | |
# make sure token_ids starts with codebook 0 | |
if isinstance(self.codebook_size, int): | |
codebook_0_range = (self.global_offset + self.quantizer_begin*self.codebook_size, self.global_offset + (self.quantizer_begin+1)*self.codebook_size) | |
elif isinstance(self.codebook_size, list): | |
codebook_0_range = (self.global_offset, self.global_offset + self.codebook_size[0]) | |
assert token_ids[0] >= codebook_0_range[0] \ | |
and token_ids[0] < codebook_0_range[1], f"token_ids[0]={token_ids[self.quantizer_begin]}, codebook_0_range={codebook_0_range}" | |
data = np.array(token_ids) | |
data = self.unflatten(data, n_quantizer=self.n_quantizer) | |
data = self.unoffset_tok_ids( | |
data, | |
global_offset=self.global_offset, | |
codebook_size=self.codebook_size, | |
num_codebooks=self.num_codebooks, | |
) | |
return data | |
def npy_to_json_str(self, npy_path): | |
data = self.npy2ids(npy_path) | |
return json.dumps({"text": data, "src": npy_path, "codec": self.codec_type}) | |
def sep(self): | |
return ''.join(self.sep) | |
def sep_ids(self): | |
return self.sep_ids | |