johnlockejrr's picture
Upload app.py
0ade37a verified
from typing import Tuple, Dict, List, Optional
import streamlit as st
import supervision as sv
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
from PIL import Image
import torch
torch.cuda.is_available = lambda: False # Force CPU-only mode in HF Space
# Page config
st.set_page_config(
page_title="Medieval Manuscript Segmentation",
page_icon="πŸ“œ",
layout="wide"
)
# Define models
MODEL_OPTIONS = {
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
}
@st.cache_resource
def load_models():
"""Load all models and cache them."""
models: Dict[str, YOLO] = {}
for name, model_file in MODEL_OPTIONS.items():
try:
model_path = hf_hub_download(
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
filename=model_file
)
models[name] = YOLO(model_path)
except Exception as e:
st.warning(f"Error loading model {name}: {str(e)}")
return models
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
"""Simplify polygon contours using Douglas-Peucker algorithm.
Args:
polygons: List of polygon contours
approx_level: Approximation level (0-1), lower values mean more simplification
Returns:
List of simplified polygons (or None for invalid polygons)
"""
result = []
for polygon in polygons:
if len(polygon) < 4:
result.append(None)
continue
perimeter = cv2.arcLength(polygon, True)
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
if len(approx) < 4:
result.append(None)
continue
result.append(approx.squeeze())
return result
# Custom MaskAnnotator for outline-only masks with simplified polygons
class OutlineMaskAnnotator:
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
self.color = color
self.thickness = thickness
self.simplify = simplify
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
if detections.mask is None:
return scene
scene = scene.copy()
for mask in detections.mask:
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
if self.simplify:
contours = simplify_polygons(contours)
contours = [c for c in contours if c is not None]
cv2.drawContours(
scene,
contours,
-1,
self.color,
self.thickness
)
return scene
# Create annotators with new settings
LABEL_ANNOTATOR = sv.LabelAnnotator(
text_color=sv.Color.BLACK,
text_scale=0.35,
text_thickness=1,
text_padding=2
)
def detect_and_annotate(
image: np.ndarray,
model_name: str,
conf_threshold: float,
iou_threshold: float,
simplify_polygons_option: bool
) -> np.ndarray:
# Get the selected model
model = models[model_name]
# Perform inference
results = model.predict(
image,
conf=conf_threshold,
iou=iou_threshold
)[0]
# Convert results to supervision Detections
boxes = results.boxes.xyxy.cpu().numpy()
confidence = results.boxes.conf.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy().astype(int)
# Handle masks if they exist
masks = None
if results.masks is not None:
masks = results.masks.data.cpu().numpy()
# Convert from (N,H,W) to (H,W,N) for processing
masks = np.transpose(masks, (1, 2, 0))
h, w = image.shape[:2]
resized_masks = []
for i in range(masks.shape[-1]):
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
resized_masks.append(resized_mask > 0.5)
masks = np.stack(resized_masks) if resized_masks else None
# Create Detections object
detections = sv.Detections(
xyxy=boxes,
confidence=confidence,
class_id=class_ids,
mask=masks
)
# Create labels with confidence scores
labels = [
f"{results.names[class_id]} ({conf:.2f})"
for class_id, conf
in zip(class_ids, confidence)
]
# Create mask annotator based on the simplify option
mask_annotator = OutlineMaskAnnotator(
color=(255, 0, 0),
thickness=2,
simplify=simplify_polygons_option
)
# Annotate image
annotated_image = image.copy()
if masks is not None:
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
return annotated_image
# Load models
models = load_models()
# App title
st.title("Medieval Manuscript Segmentation with YOLO")
# Sidebar for controls
with st.sidebar:
st.header("Detection Settings")
model_name = st.selectbox(
"Model",
options=list(MODEL_OPTIONS.keys()),
index=0,
help="Select YOLO model variant"
)
conf_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.25,
step=0.05,
help="Minimum confidence score for detections"
)
iou_threshold = st.slider(
"IoU Threshold",
min_value=0.0,
max_value=1.0,
value=0.45,
step=0.05,
help="Decrease for stricter detection, increase for more overlapping masks"
)
simplify_polygons_option = st.checkbox(
"Simplify Polygons",
value=False,
help="Simplify polygon contours for cleaner outlines"
)
# Main content area
col1, col2 = st.columns(2)
with col1:
st.subheader("Input Image")
uploaded_file = st.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png"],
key="file_uploader"
)
if uploaded_file is not None:
image = np.array(Image.open(uploaded_file))
st.image(image, caption="Uploaded Image", use_container_width=True) # Updated here
else:
image = None
st.info("Please upload an image file")
with col2:
st.subheader("Detection Result")
if st.button("Detect", type="primary") and image is not None:
with st.spinner("Processing image..."):
annotated_image = detect_and_annotate(
image,
model_name,
conf_threshold,
iou_threshold,
simplify_polygons_option
)
st.image(annotated_image, caption="Detection Result", use_container_width=True) # Updated here
elif image is None:
st.warning("Please upload an image first")
else:
st.info("Click the Detect button to process the image")