Update app.py
Browse files
app.py
CHANGED
|
@@ -1,253 +1,310 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import yaml
|
| 4 |
-
import
|
| 5 |
-
import plotly.express as px
|
| 6 |
from core.graph_mamba import GraphMamba
|
| 7 |
from data.loader import GraphDataLoader
|
| 8 |
from utils.metrics import GraphMetrics
|
| 9 |
-
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Load configuration
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
#
|
| 17 |
model = None
|
| 18 |
-
|
| 19 |
|
| 20 |
def load_and_evaluate(dataset_name, ordering_strategy, num_layers):
|
| 21 |
-
"""Load dataset,
|
| 22 |
-
global model, config
|
| 23 |
|
| 24 |
try:
|
| 25 |
# Update config
|
| 26 |
config['ordering']['strategy'] = ordering_strategy
|
| 27 |
config['model']['n_layers'] = num_layers
|
| 28 |
|
|
|
|
|
|
|
| 29 |
# Load data
|
| 30 |
data_loader = GraphDataLoader()
|
| 31 |
|
| 32 |
-
if dataset_name in ['Cora', 'CiteSeer', 'PubMed'
|
| 33 |
dataset = data_loader.load_node_classification_data(dataset_name)
|
| 34 |
data = dataset[0].to(device)
|
| 35 |
task_type = 'node_classification'
|
|
|
|
|
|
|
| 36 |
else:
|
| 37 |
dataset = data_loader.load_graph_classification_data(dataset_name)
|
| 38 |
-
train_loader, val_loader, test_loader = data_loader.create_dataloaders(
|
| 39 |
-
dataset, 'graph_classification'
|
| 40 |
-
)
|
| 41 |
task_type = 'graph_classification'
|
|
|
|
| 42 |
|
| 43 |
# Get dataset info
|
| 44 |
dataset_info = data_loader.get_dataset_info(dataset)
|
| 45 |
|
|
|
|
|
|
|
| 46 |
# Initialize model
|
|
|
|
| 47 |
model = GraphMamba(config).to(device)
|
| 48 |
|
| 49 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
if task_type == 'node_classification':
|
| 51 |
# Use test mask for evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
metrics = GraphMetrics.evaluate_node_classification(
|
| 53 |
-
model, data,
|
| 54 |
)
|
| 55 |
|
| 56 |
# Create visualization
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
else:
|
| 60 |
# Graph classification
|
|
|
|
|
|
|
|
|
|
| 61 |
metrics = GraphMetrics.evaluate_graph_classification(
|
| 62 |
model, test_loader, device
|
| 63 |
)
|
| 64 |
-
fig =
|
| 65 |
|
| 66 |
# Format results
|
| 67 |
results_text = f"""
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
"""
|
| 84 |
|
| 85 |
for metric, value in metrics.items():
|
| 86 |
-
if isinstance(value, float):
|
| 87 |
-
results_text += f"- {metric.replace('_', ' ').title()}: {value:.4f}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
| 89 |
return results_text, fig
|
| 90 |
|
| 91 |
except Exception as e:
|
| 92 |
-
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Layout
|
| 108 |
-
pos = nx.spring_layout(G, k=1, iterations=50)
|
| 109 |
-
|
| 110 |
-
# Node colors based on labels if available
|
| 111 |
-
node_colors = []
|
| 112 |
-
if hasattr(data, 'y') and data.y is not None:
|
| 113 |
-
labels = data.y.cpu().numpy()
|
| 114 |
-
for node in G.nodes():
|
| 115 |
-
if node < len(labels):
|
| 116 |
-
node_colors.append(labels[node])
|
| 117 |
-
else:
|
| 118 |
-
node_colors.append(0)
|
| 119 |
-
else:
|
| 120 |
-
node_colors = [0] * len(G.nodes())
|
| 121 |
-
|
| 122 |
-
# Create traces
|
| 123 |
-
edge_x, edge_y = [], []
|
| 124 |
-
for edge in G.edges():
|
| 125 |
-
x0, y0 = pos[edge[0]]
|
| 126 |
-
x1, y1 = pos[edge[1]]
|
| 127 |
-
edge_x.extend([x0, x1, None])
|
| 128 |
-
edge_y.extend([y0, y1, None])
|
| 129 |
-
|
| 130 |
-
node_x = [pos[node][0] for node in G.nodes()]
|
| 131 |
-
node_y = [pos[node][1] for node in G.nodes()]
|
| 132 |
-
|
| 133 |
-
fig = go.Figure()
|
| 134 |
-
|
| 135 |
-
# Add edges
|
| 136 |
-
fig.add_trace(go.Scatter(
|
| 137 |
-
x=edge_x, y=edge_y,
|
| 138 |
-
line=dict(width=0.5, color='#888'),
|
| 139 |
-
hoverinfo='none',
|
| 140 |
-
mode='lines'
|
| 141 |
-
))
|
| 142 |
-
|
| 143 |
-
# Add nodes
|
| 144 |
-
fig.add_trace(go.Scatter(
|
| 145 |
-
x=node_x, y=node_y,
|
| 146 |
-
mode='markers',
|
| 147 |
-
hoverinfo='text',
|
| 148 |
-
text=[f'Node {i}' for i in G.nodes()],
|
| 149 |
-
marker=dict(
|
| 150 |
-
size=8,
|
| 151 |
-
color=node_colors,
|
| 152 |
-
colorscale='Viridis',
|
| 153 |
-
line=dict(width=2)
|
| 154 |
-
)
|
| 155 |
-
))
|
| 156 |
-
|
| 157 |
-
fig.update_layout(
|
| 158 |
-
title='Graph Visualization',
|
| 159 |
-
showlegend=False,
|
| 160 |
-
hovermode='closest',
|
| 161 |
-
margin=dict(b=20,l=5,r=5,t=40),
|
| 162 |
-
annotations=[
|
| 163 |
-
dict(
|
| 164 |
-
text="Graph structure visualization",
|
| 165 |
-
showarrow=False,
|
| 166 |
-
xref="paper", yref="paper",
|
| 167 |
-
x=0.005, y=-0.002,
|
| 168 |
-
xanchor='left', yanchor='bottom',
|
| 169 |
-
font=dict(color="black", size=12)
|
| 170 |
-
)
|
| 171 |
-
],
|
| 172 |
-
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 173 |
-
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
| 174 |
-
)
|
| 175 |
|
| 176 |
-
|
| 177 |
|
| 178 |
-
except Exception as e:
|
| 179 |
# Return empty plot on error
|
|
|
|
| 180 |
fig = go.Figure()
|
| 181 |
-
fig.add_annotation(
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
stats = [
|
| 187 |
-
['Features', dataset_info['num_features']],
|
| 188 |
-
['Classes', dataset_info['num_classes']],
|
| 189 |
-
['Avg Nodes', dataset_info['avg_nodes']],
|
| 190 |
-
['Avg Edges', dataset_info['avg_edges']]
|
| 191 |
-
]
|
| 192 |
-
|
| 193 |
-
fig = go.Figure(data=[
|
| 194 |
-
go.Bar(
|
| 195 |
-
x=[stat[0] for stat in stats],
|
| 196 |
-
y=[stat[1] for stat in stats],
|
| 197 |
-
marker_color='lightblue'
|
| 198 |
)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
fig.update_layout(
|
| 202 |
-
title='Dataset Statistics',
|
| 203 |
-
xaxis_title='Metric',
|
| 204 |
-
yaxis_title='Value'
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
return fig
|
| 208 |
|
| 209 |
# Gradio interface
|
| 210 |
-
with gr.Blocks(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
gr.Markdown("""
|
| 212 |
# ๐ง Mamba Graph Neural Network
|
| 213 |
|
| 214 |
-
Real-time evaluation of Graph-Mamba on standard benchmarks
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
""")
|
| 217 |
|
| 218 |
with gr.Row():
|
| 219 |
-
with gr.Column():
|
|
|
|
|
|
|
| 220 |
dataset_choice = gr.Dropdown(
|
| 221 |
-
choices=['Cora', 'CiteSeer', 'PubMed', 'MUTAG', 'ENZYMES'
|
| 222 |
value='Cora',
|
| 223 |
-
label="Dataset"
|
|
|
|
| 224 |
)
|
| 225 |
|
| 226 |
ordering_choice = gr.Dropdown(
|
| 227 |
choices=['bfs', 'spectral', 'degree', 'community'],
|
| 228 |
value='bfs',
|
| 229 |
-
label="Graph Ordering Strategy"
|
|
|
|
| 230 |
)
|
| 231 |
|
| 232 |
layers_slider = gr.Slider(
|
| 233 |
-
minimum=2, maximum=
|
| 234 |
-
label="Number of Mamba Layers"
|
|
|
|
| 235 |
)
|
| 236 |
|
| 237 |
-
evaluate_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
-
with gr.Column():
|
| 240 |
-
results_text = gr.Markdown("
|
|
|
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
with gr.Row():
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
# Event handlers
|
| 246 |
evaluate_btn.click(
|
| 247 |
fn=load_and_evaluate,
|
| 248 |
inputs=[dataset_choice, ordering_choice, layers_slider],
|
| 249 |
-
outputs=[results_text, visualization]
|
|
|
|
| 250 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
if __name__ == "__main__":
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import yaml
|
| 4 |
+
import os
|
|
|
|
| 5 |
from core.graph_mamba import GraphMamba
|
| 6 |
from data.loader import GraphDataLoader
|
| 7 |
from utils.metrics import GraphMetrics
|
| 8 |
+
from utils.visualization import GraphVisualizer
|
| 9 |
+
import warnings
|
| 10 |
+
warnings.filterwarnings('ignore')
|
| 11 |
+
|
| 12 |
+
# Force CPU for HuggingFace Spaces
|
| 13 |
+
if os.getenv('SPACE_ID') or os.getenv('GRADIO_SERVER_NAME'):
|
| 14 |
+
device = torch.device('cpu')
|
| 15 |
+
print("Running on HuggingFace Spaces - using CPU")
|
| 16 |
+
else:
|
| 17 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 18 |
+
print(f"Running locally - using {device}")
|
| 19 |
|
| 20 |
# Load configuration
|
| 21 |
+
config = {
|
| 22 |
+
'model': {
|
| 23 |
+
'd_model': 128, # Smaller for demo
|
| 24 |
+
'd_state': 8,
|
| 25 |
+
'd_conv': 4,
|
| 26 |
+
'expand': 2,
|
| 27 |
+
'n_layers': 3, # Fewer layers for speed
|
| 28 |
+
'dropout': 0.1
|
| 29 |
+
},
|
| 30 |
+
'data': {
|
| 31 |
+
'batch_size': 16,
|
| 32 |
+
'test_split': 0.2
|
| 33 |
+
},
|
| 34 |
+
'ordering': {
|
| 35 |
+
'strategy': 'bfs',
|
| 36 |
+
'preserve_locality': True
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
|
| 40 |
+
# Global model holder
|
| 41 |
model = None
|
| 42 |
+
current_dataset = None
|
| 43 |
|
| 44 |
def load_and_evaluate(dataset_name, ordering_strategy, num_layers):
|
| 45 |
+
"""Load dataset, configure model, return results"""
|
| 46 |
+
global model, config, current_dataset
|
| 47 |
|
| 48 |
try:
|
| 49 |
# Update config
|
| 50 |
config['ordering']['strategy'] = ordering_strategy
|
| 51 |
config['model']['n_layers'] = num_layers
|
| 52 |
|
| 53 |
+
print(f"Loading dataset: {dataset_name}")
|
| 54 |
+
|
| 55 |
# Load data
|
| 56 |
data_loader = GraphDataLoader()
|
| 57 |
|
| 58 |
+
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
| 59 |
dataset = data_loader.load_node_classification_data(dataset_name)
|
| 60 |
data = dataset[0].to(device)
|
| 61 |
task_type = 'node_classification'
|
| 62 |
+
current_dataset = data
|
| 63 |
+
print(f"Loaded {dataset_name}: {data.num_nodes} nodes, {data.num_edges} edges")
|
| 64 |
else:
|
| 65 |
dataset = data_loader.load_graph_classification_data(dataset_name)
|
|
|
|
|
|
|
|
|
|
| 66 |
task_type = 'graph_classification'
|
| 67 |
+
print(f"Loaded {dataset_name}: {len(dataset)} graphs")
|
| 68 |
|
| 69 |
# Get dataset info
|
| 70 |
dataset_info = data_loader.get_dataset_info(dataset)
|
| 71 |
|
| 72 |
+
print(f"Dataset info: {dataset_info}")
|
| 73 |
+
|
| 74 |
# Initialize model
|
| 75 |
+
print("Initializing GraphMamba model...")
|
| 76 |
model = GraphMamba(config).to(device)
|
| 77 |
|
| 78 |
+
# Initialize classifier for evaluation
|
| 79 |
+
num_classes = dataset_info['num_classes']
|
| 80 |
+
model._init_classifier(num_classes, device)
|
| 81 |
+
|
| 82 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 83 |
+
print(f"Model parameters: {total_params:,}")
|
| 84 |
+
|
| 85 |
+
# Quick evaluation (random weights for demo)
|
| 86 |
+
print("Running evaluation...")
|
| 87 |
if task_type == 'node_classification':
|
| 88 |
# Use test mask for evaluation
|
| 89 |
+
if hasattr(data, 'test_mask'):
|
| 90 |
+
mask = data.test_mask
|
| 91 |
+
else:
|
| 92 |
+
# Create a test mask if not available
|
| 93 |
+
num_nodes = data.num_nodes
|
| 94 |
+
mask = torch.zeros(num_nodes, dtype=torch.bool)
|
| 95 |
+
mask[num_nodes//2:] = True
|
| 96 |
+
|
| 97 |
metrics = GraphMetrics.evaluate_node_classification(
|
| 98 |
+
model, data, mask, device
|
| 99 |
)
|
| 100 |
|
| 101 |
# Create visualization
|
| 102 |
+
print("Creating visualization...")
|
| 103 |
+
fig = GraphVisualizer.create_graph_plot(data)
|
| 104 |
|
| 105 |
else:
|
| 106 |
# Graph classification
|
| 107 |
+
train_loader, val_loader, test_loader = data_loader.create_dataloaders(
|
| 108 |
+
dataset, 'graph_classification'
|
| 109 |
+
)
|
| 110 |
metrics = GraphMetrics.evaluate_graph_classification(
|
| 111 |
model, test_loader, device
|
| 112 |
)
|
| 113 |
+
fig = GraphVisualizer.create_metrics_plot(metrics)
|
| 114 |
|
| 115 |
# Format results
|
| 116 |
results_text = f"""
|
| 117 |
+
## ๐ง Mamba Graph Neural Network Results
|
| 118 |
+
|
| 119 |
+
### Dataset: {dataset_name}
|
| 120 |
+
|
| 121 |
+
**Dataset Statistics:**
|
| 122 |
+
- ๐ Features: {dataset_info['num_features']}
|
| 123 |
+
- ๐ท๏ธ Classes: {dataset_info['num_classes']}
|
| 124 |
+
- ๐ Graphs: {dataset_info['num_graphs']}
|
| 125 |
+
- ๐ Avg Nodes: {dataset_info['avg_nodes']:.1f}
|
| 126 |
+
- ๐ Avg Edges: {dataset_info['avg_edges']:.1f}
|
| 127 |
+
|
| 128 |
+
**Model Configuration:**
|
| 129 |
+
- ๐ Ordering Strategy: {ordering_strategy}
|
| 130 |
+
- ๐๏ธ Layers: {num_layers}
|
| 131 |
+
- โ๏ธ Parameters: {sum(p.numel() for p in model.parameters()):,}
|
| 132 |
+
- ๐พ Device: {device}
|
| 133 |
+
|
| 134 |
+
**Performance Metrics:**
|
| 135 |
"""
|
| 136 |
|
| 137 |
for metric, value in metrics.items():
|
| 138 |
+
if isinstance(value, float) and metric != 'error':
|
| 139 |
+
results_text += f"- ๐ {metric.replace('_', ' ').title()}: {value:.4f}\n"
|
| 140 |
+
elif metric == 'error':
|
| 141 |
+
results_text += f"- โ ๏ธ Error: {value}\n"
|
| 142 |
+
|
| 143 |
+
results_text += f"""
|
| 144 |
+
|
| 145 |
+
**Status:** โ
Model successfully loaded and evaluated!
|
| 146 |
+
|
| 147 |
+
*Note: This is a demo with random weights. In production, the model would be trained on the dataset.*
|
| 148 |
+
"""
|
| 149 |
|
| 150 |
+
print("Evaluation completed successfully!")
|
| 151 |
return results_text, fig
|
| 152 |
|
| 153 |
except Exception as e:
|
| 154 |
+
error_msg = f"""
|
| 155 |
+
## โ Error Loading Model
|
| 156 |
|
| 157 |
+
**Error:** {str(e)}
|
| 158 |
+
|
| 159 |
+
**Troubleshooting:**
|
| 160 |
+
- Check dataset availability
|
| 161 |
+
- Verify device compatibility
|
| 162 |
+
- Try different ordering strategy
|
| 163 |
+
|
| 164 |
+
**Debug Info:**
|
| 165 |
+
- Device: {device}
|
| 166 |
+
- Dataset: {dataset_name}
|
| 167 |
+
- Strategy: {ordering_strategy}
|
| 168 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
print(f"Error: {e}")
|
| 171 |
|
|
|
|
| 172 |
# Return empty plot on error
|
| 173 |
+
import plotly.graph_objects as go
|
| 174 |
fig = go.Figure()
|
| 175 |
+
fig.add_annotation(
|
| 176 |
+
text=f"Error: {str(e)}",
|
| 177 |
+
x=0.5, y=0.5,
|
| 178 |
+
xref="paper", yref="paper",
|
| 179 |
+
showarrow=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
+
|
| 182 |
+
return error_msg, fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
# Gradio interface
|
| 185 |
+
with gr.Blocks(
|
| 186 |
+
title="๐ง Mamba Graph Neural Network",
|
| 187 |
+
theme=gr.themes.Soft(),
|
| 188 |
+
css="""
|
| 189 |
+
.gradio-container {
|
| 190 |
+
max-width: 1200px !important;
|
| 191 |
+
}
|
| 192 |
+
"""
|
| 193 |
+
) as demo:
|
| 194 |
+
|
| 195 |
gr.Markdown("""
|
| 196 |
# ๐ง Mamba Graph Neural Network
|
| 197 |
|
| 198 |
+
**Real-time evaluation of Graph-Mamba on standard benchmarks.**
|
| 199 |
+
|
| 200 |
+
This demonstrates the revolutionary combination of Mamba's linear complexity with graph neural networks.
|
| 201 |
+
Uses actual datasets and real model architectures - no synthetic data.
|
| 202 |
+
|
| 203 |
+
๐ **Features:**
|
| 204 |
+
- Linear O(n) complexity for massive graphs
|
| 205 |
+
- Multiple graph ordering strategies
|
| 206 |
+
- Real benchmark datasets (Cora, CiteSeer, etc.)
|
| 207 |
+
- Interactive visualizations
|
| 208 |
""")
|
| 209 |
|
| 210 |
with gr.Row():
|
| 211 |
+
with gr.Column(scale=1):
|
| 212 |
+
gr.Markdown("### ๐ฎ Model Configuration")
|
| 213 |
+
|
| 214 |
dataset_choice = gr.Dropdown(
|
| 215 |
+
choices=['Cora', 'CiteSeer', 'PubMed', 'MUTAG', 'ENZYMES'],
|
| 216 |
value='Cora',
|
| 217 |
+
label="๐ Dataset",
|
| 218 |
+
info="Choose a graph dataset for evaluation"
|
| 219 |
)
|
| 220 |
|
| 221 |
ordering_choice = gr.Dropdown(
|
| 222 |
choices=['bfs', 'spectral', 'degree', 'community'],
|
| 223 |
value='bfs',
|
| 224 |
+
label="๐ Graph Ordering Strategy",
|
| 225 |
+
info="How to convert graph to sequence"
|
| 226 |
)
|
| 227 |
|
| 228 |
layers_slider = gr.Slider(
|
| 229 |
+
minimum=2, maximum=6, value=3, step=1,
|
| 230 |
+
label="๐๏ธ Number of Mamba Layers",
|
| 231 |
+
info="More layers = more capacity"
|
| 232 |
)
|
| 233 |
|
| 234 |
+
evaluate_btn = gr.Button(
|
| 235 |
+
"๐ Evaluate Model",
|
| 236 |
+
variant="primary",
|
| 237 |
+
size="lg"
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
gr.Markdown("""
|
| 241 |
+
### ๐ Ordering Strategies:
|
| 242 |
+
- **BFS**: Breadth-first traversal
|
| 243 |
+
- **Spectral**: Eigenvalue-based ordering
|
| 244 |
+
- **Degree**: High-degree nodes first
|
| 245 |
+
- **Community**: Cluster-aware ordering
|
| 246 |
+
""")
|
| 247 |
|
| 248 |
+
with gr.Column(scale=2):
|
| 249 |
+
results_text = gr.Markdown("""
|
| 250 |
+
### ๐ Welcome!
|
| 251 |
|
| 252 |
+
Select your parameters and click **'๐ Evaluate Model'** to see Mamba Graph in action.
|
| 253 |
+
|
| 254 |
+
The model will:
|
| 255 |
+
1. ๐ฅ Load the selected dataset
|
| 256 |
+
2. ๐ Apply graph ordering strategy
|
| 257 |
+
3. ๐ง Process through Mamba layers
|
| 258 |
+
4. ๐ Evaluate performance
|
| 259 |
+
5. ๐ Show results and visualization
|
| 260 |
+
""")
|
| 261 |
+
|
| 262 |
with gr.Row():
|
| 263 |
+
with gr.Column():
|
| 264 |
+
visualization = gr.Plot(
|
| 265 |
+
label="๐ Graph Visualization",
|
| 266 |
+
container=True
|
| 267 |
+
)
|
| 268 |
|
| 269 |
# Event handlers
|
| 270 |
evaluate_btn.click(
|
| 271 |
fn=load_and_evaluate,
|
| 272 |
inputs=[dataset_choice, ordering_choice, layers_slider],
|
| 273 |
+
outputs=[results_text, visualization],
|
| 274 |
+
show_progress=True
|
| 275 |
)
|
| 276 |
+
|
| 277 |
+
# Example section
|
| 278 |
+
gr.Markdown("""
|
| 279 |
+
---
|
| 280 |
+
### ๐ฏ What Makes This Special?
|
| 281 |
+
|
| 282 |
+
**Traditional GNNs:** O(nยฒ) complexity limits them to small graphs
|
| 283 |
+
|
| 284 |
+
**Mamba Graph:** O(n) complexity enables processing of massive graphs
|
| 285 |
+
|
| 286 |
+
**Key Innovation:** Smart graph-to-sequence conversion preserves structural information while enabling linear-time processing.
|
| 287 |
+
|
| 288 |
+
### ๐ฌ Technical Details:
|
| 289 |
+
- **Selective State Space Models** for sequence processing
|
| 290 |
+
- **Structure-preserving ordering** algorithms
|
| 291 |
+
- **Position encoding** to maintain graph relationships
|
| 292 |
+
- **Multi-scale processing** for different graph properties
|
| 293 |
+
|
| 294 |
+
### ๐ References:
|
| 295 |
+
- Mamba: Linear-Time Sequence Modeling (Gu & Dao, 2023)
|
| 296 |
+
- Graph Neural Networks (Kipf & Welling, 2017)
|
| 297 |
+
- Spectral Graph Theory applications
|
| 298 |
+
""")
|
| 299 |
|
| 300 |
if __name__ == "__main__":
|
| 301 |
+
print("๐ง Starting Mamba Graph Demo...")
|
| 302 |
+
print(f"Device: {device}")
|
| 303 |
+
print("Loading Gradio interface...")
|
| 304 |
+
|
| 305 |
+
demo.launch(
|
| 306 |
+
server_name="0.0.0.0",
|
| 307 |
+
server_port=7860,
|
| 308 |
+
show_error=True,
|
| 309 |
+
share=False # Set to False for HuggingFace Spaces
|
| 310 |
+
)
|