Spaces:
Build error
Build error
tags: | |
- mteb | |
- sentence_embedding | |
- feature_extraction | |
- transformers | |
- transformers.js | |
model-index: | |
- name: UAE-Large-V1 | |
results: | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/amazon_counterfactual | |
name: MTEB AmazonCounterfactualClassification (en) | |
config: en | |
split: test | |
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 | |
metrics: | |
- type: accuracy | |
value: 75.55223880597015 | |
- type: ap | |
value: 38.264070815317794 | |
- type: f1 | |
value: 69.40977934769845 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/amazon_polarity | |
name: MTEB AmazonPolarityClassification | |
config: default | |
split: test | |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 | |
metrics: | |
- type: accuracy | |
value: 92.84267499999999 | |
- type: ap | |
value: 89.57568507997713 | |
- type: f1 | |
value: 92.82590734337774 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/amazon_reviews_multi | |
name: MTEB AmazonReviewsClassification (en) | |
config: en | |
split: test | |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d | |
metrics: | |
- type: accuracy | |
value: 48.292 | |
- type: f1 | |
value: 47.90257816032778 | |
- task: | |
type: Retrieval | |
dataset: | |
type: arguana | |
name: MTEB ArguAna | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 42.105 | |
- type: map_at_10 | |
value: 58.181000000000004 | |
- type: map_at_100 | |
value: 58.653999999999996 | |
- type: map_at_1000 | |
value: 58.657000000000004 | |
- type: map_at_3 | |
value: 54.386 | |
- type: map_at_5 | |
value: 56.757999999999996 | |
- type: mrr_at_1 | |
value: 42.745 | |
- type: mrr_at_10 | |
value: 58.437 | |
- type: mrr_at_100 | |
value: 58.894999999999996 | |
- type: mrr_at_1000 | |
value: 58.897999999999996 | |
- type: mrr_at_3 | |
value: 54.635 | |
- type: mrr_at_5 | |
value: 56.99999999999999 | |
- type: ndcg_at_1 | |
value: 42.105 | |
- type: ndcg_at_10 | |
value: 66.14999999999999 | |
- type: ndcg_at_100 | |
value: 68.048 | |
- type: ndcg_at_1000 | |
value: 68.11399999999999 | |
- type: ndcg_at_3 | |
value: 58.477000000000004 | |
- type: ndcg_at_5 | |
value: 62.768 | |
- type: precision_at_1 | |
value: 42.105 | |
- type: precision_at_10 | |
value: 9.110999999999999 | |
- type: precision_at_100 | |
value: 0.991 | |
- type: precision_at_1000 | |
value: 0.1 | |
- type: precision_at_3 | |
value: 23.447000000000003 | |
- type: precision_at_5 | |
value: 16.159000000000002 | |
- type: recall_at_1 | |
value: 42.105 | |
- type: recall_at_10 | |
value: 91.11 | |
- type: recall_at_100 | |
value: 99.14699999999999 | |
- type: recall_at_1000 | |
value: 99.644 | |
- type: recall_at_3 | |
value: 70.341 | |
- type: recall_at_5 | |
value: 80.797 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/arxiv-clustering-p2p | |
name: MTEB ArxivClusteringP2P | |
config: default | |
split: test | |
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d | |
metrics: | |
- type: v_measure | |
value: 49.02580759154173 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/arxiv-clustering-s2s | |
name: MTEB ArxivClusteringS2S | |
config: default | |
split: test | |
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 | |
metrics: | |
- type: v_measure | |
value: 43.093601280163554 | |
- task: | |
type: Reranking | |
dataset: | |
type: mteb/askubuntudupquestions-reranking | |
name: MTEB AskUbuntuDupQuestions | |
config: default | |
split: test | |
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 | |
metrics: | |
- type: map | |
value: 64.19590406875427 | |
- type: mrr | |
value: 77.09547992788991 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/biosses-sts | |
name: MTEB BIOSSES | |
config: default | |
split: test | |
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a | |
metrics: | |
- type: cos_sim_pearson | |
value: 87.86678362843676 | |
- type: cos_sim_spearman | |
value: 86.1423242570783 | |
- type: euclidean_pearson | |
value: 85.98994198511751 | |
- type: euclidean_spearman | |
value: 86.48209103503942 | |
- type: manhattan_pearson | |
value: 85.6446436316182 | |
- type: manhattan_spearman | |
value: 86.21039809734357 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/banking77 | |
name: MTEB Banking77Classification | |
config: default | |
split: test | |
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 | |
metrics: | |
- type: accuracy | |
value: 87.69155844155844 | |
- type: f1 | |
value: 87.68109381943547 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/biorxiv-clustering-p2p | |
name: MTEB BiorxivClusteringP2P | |
config: default | |
split: test | |
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 | |
metrics: | |
- type: v_measure | |
value: 39.37501687500394 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/biorxiv-clustering-s2s | |
name: MTEB BiorxivClusteringS2S | |
config: default | |
split: test | |
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 | |
metrics: | |
- type: v_measure | |
value: 37.23401405155885 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackAndroidRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 30.232 | |
- type: map_at_10 | |
value: 41.404999999999994 | |
- type: map_at_100 | |
value: 42.896 | |
- type: map_at_1000 | |
value: 43.028 | |
- type: map_at_3 | |
value: 37.925 | |
- type: map_at_5 | |
value: 39.865 | |
- type: mrr_at_1 | |
value: 36.338 | |
- type: mrr_at_10 | |
value: 46.969 | |
- type: mrr_at_100 | |
value: 47.684 | |
- type: mrr_at_1000 | |
value: 47.731 | |
- type: mrr_at_3 | |
value: 44.063 | |
- type: mrr_at_5 | |
value: 45.908 | |
- type: ndcg_at_1 | |
value: 36.338 | |
- type: ndcg_at_10 | |
value: 47.887 | |
- type: ndcg_at_100 | |
value: 53.357 | |
- type: ndcg_at_1000 | |
value: 55.376999999999995 | |
- type: ndcg_at_3 | |
value: 42.588 | |
- type: ndcg_at_5 | |
value: 45.132 | |
- type: precision_at_1 | |
value: 36.338 | |
- type: precision_at_10 | |
value: 9.17 | |
- type: precision_at_100 | |
value: 1.4909999999999999 | |
- type: precision_at_1000 | |
value: 0.196 | |
- type: precision_at_3 | |
value: 20.315 | |
- type: precision_at_5 | |
value: 14.793000000000001 | |
- type: recall_at_1 | |
value: 30.232 | |
- type: recall_at_10 | |
value: 60.67399999999999 | |
- type: recall_at_100 | |
value: 83.628 | |
- type: recall_at_1000 | |
value: 96.209 | |
- type: recall_at_3 | |
value: 45.48 | |
- type: recall_at_5 | |
value: 52.354 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackEnglishRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 32.237 | |
- type: map_at_10 | |
value: 42.829 | |
- type: map_at_100 | |
value: 44.065 | |
- type: map_at_1000 | |
value: 44.199 | |
- type: map_at_3 | |
value: 39.885999999999996 | |
- type: map_at_5 | |
value: 41.55 | |
- type: mrr_at_1 | |
value: 40.064 | |
- type: mrr_at_10 | |
value: 48.611 | |
- type: mrr_at_100 | |
value: 49.245 | |
- type: mrr_at_1000 | |
value: 49.29 | |
- type: mrr_at_3 | |
value: 46.561 | |
- type: mrr_at_5 | |
value: 47.771 | |
- type: ndcg_at_1 | |
value: 40.064 | |
- type: ndcg_at_10 | |
value: 48.388 | |
- type: ndcg_at_100 | |
value: 52.666999999999994 | |
- type: ndcg_at_1000 | |
value: 54.67100000000001 | |
- type: ndcg_at_3 | |
value: 44.504 | |
- type: ndcg_at_5 | |
value: 46.303 | |
- type: precision_at_1 | |
value: 40.064 | |
- type: precision_at_10 | |
value: 9.051 | |
- type: precision_at_100 | |
value: 1.4500000000000002 | |
- type: precision_at_1000 | |
value: 0.193 | |
- type: precision_at_3 | |
value: 21.444 | |
- type: precision_at_5 | |
value: 15.045 | |
- type: recall_at_1 | |
value: 32.237 | |
- type: recall_at_10 | |
value: 57.943999999999996 | |
- type: recall_at_100 | |
value: 75.98700000000001 | |
- type: recall_at_1000 | |
value: 88.453 | |
- type: recall_at_3 | |
value: 46.268 | |
- type: recall_at_5 | |
value: 51.459999999999994 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackGamingRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 38.797 | |
- type: map_at_10 | |
value: 51.263000000000005 | |
- type: map_at_100 | |
value: 52.333 | |
- type: map_at_1000 | |
value: 52.393 | |
- type: map_at_3 | |
value: 47.936 | |
- type: map_at_5 | |
value: 49.844 | |
- type: mrr_at_1 | |
value: 44.389 | |
- type: mrr_at_10 | |
value: 54.601 | |
- type: mrr_at_100 | |
value: 55.300000000000004 | |
- type: mrr_at_1000 | |
value: 55.333 | |
- type: mrr_at_3 | |
value: 52.068999999999996 | |
- type: mrr_at_5 | |
value: 53.627 | |
- type: ndcg_at_1 | |
value: 44.389 | |
- type: ndcg_at_10 | |
value: 57.193000000000005 | |
- type: ndcg_at_100 | |
value: 61.307 | |
- type: ndcg_at_1000 | |
value: 62.529 | |
- type: ndcg_at_3 | |
value: 51.607 | |
- type: ndcg_at_5 | |
value: 54.409 | |
- type: precision_at_1 | |
value: 44.389 | |
- type: precision_at_10 | |
value: 9.26 | |
- type: precision_at_100 | |
value: 1.222 | |
- type: precision_at_1000 | |
value: 0.13699999999999998 | |
- type: precision_at_3 | |
value: 23.03 | |
- type: precision_at_5 | |
value: 15.887 | |
- type: recall_at_1 | |
value: 38.797 | |
- type: recall_at_10 | |
value: 71.449 | |
- type: recall_at_100 | |
value: 88.881 | |
- type: recall_at_1000 | |
value: 97.52 | |
- type: recall_at_3 | |
value: 56.503 | |
- type: recall_at_5 | |
value: 63.392 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackGisRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 27.291999999999998 | |
- type: map_at_10 | |
value: 35.65 | |
- type: map_at_100 | |
value: 36.689 | |
- type: map_at_1000 | |
value: 36.753 | |
- type: map_at_3 | |
value: 32.995000000000005 | |
- type: map_at_5 | |
value: 34.409 | |
- type: mrr_at_1 | |
value: 29.04 | |
- type: mrr_at_10 | |
value: 37.486000000000004 | |
- type: mrr_at_100 | |
value: 38.394 | |
- type: mrr_at_1000 | |
value: 38.445 | |
- type: mrr_at_3 | |
value: 35.028 | |
- type: mrr_at_5 | |
value: 36.305 | |
- type: ndcg_at_1 | |
value: 29.04 | |
- type: ndcg_at_10 | |
value: 40.613 | |
- type: ndcg_at_100 | |
value: 45.733000000000004 | |
- type: ndcg_at_1000 | |
value: 47.447 | |
- type: ndcg_at_3 | |
value: 35.339999999999996 | |
- type: ndcg_at_5 | |
value: 37.706 | |
- type: precision_at_1 | |
value: 29.04 | |
- type: precision_at_10 | |
value: 6.192 | |
- type: precision_at_100 | |
value: 0.9249999999999999 | |
- type: precision_at_1000 | |
value: 0.11 | |
- type: precision_at_3 | |
value: 14.802000000000001 | |
- type: precision_at_5 | |
value: 10.305 | |
- type: recall_at_1 | |
value: 27.291999999999998 | |
- type: recall_at_10 | |
value: 54.25299999999999 | |
- type: recall_at_100 | |
value: 77.773 | |
- type: recall_at_1000 | |
value: 90.795 | |
- type: recall_at_3 | |
value: 39.731 | |
- type: recall_at_5 | |
value: 45.403999999999996 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackMathematicaRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 18.326 | |
- type: map_at_10 | |
value: 26.290999999999997 | |
- type: map_at_100 | |
value: 27.456999999999997 | |
- type: map_at_1000 | |
value: 27.583000000000002 | |
- type: map_at_3 | |
value: 23.578 | |
- type: map_at_5 | |
value: 25.113000000000003 | |
- type: mrr_at_1 | |
value: 22.637 | |
- type: mrr_at_10 | |
value: 31.139 | |
- type: mrr_at_100 | |
value: 32.074999999999996 | |
- type: mrr_at_1000 | |
value: 32.147 | |
- type: mrr_at_3 | |
value: 28.483000000000004 | |
- type: mrr_at_5 | |
value: 29.963 | |
- type: ndcg_at_1 | |
value: 22.637 | |
- type: ndcg_at_10 | |
value: 31.717000000000002 | |
- type: ndcg_at_100 | |
value: 37.201 | |
- type: ndcg_at_1000 | |
value: 40.088 | |
- type: ndcg_at_3 | |
value: 26.686 | |
- type: ndcg_at_5 | |
value: 29.076999999999998 | |
- type: precision_at_1 | |
value: 22.637 | |
- type: precision_at_10 | |
value: 5.7090000000000005 | |
- type: precision_at_100 | |
value: 0.979 | |
- type: precision_at_1000 | |
value: 0.13799999999999998 | |
- type: precision_at_3 | |
value: 12.894 | |
- type: precision_at_5 | |
value: 9.328 | |
- type: recall_at_1 | |
value: 18.326 | |
- type: recall_at_10 | |
value: 43.824999999999996 | |
- type: recall_at_100 | |
value: 67.316 | |
- type: recall_at_1000 | |
value: 87.481 | |
- type: recall_at_3 | |
value: 29.866999999999997 | |
- type: recall_at_5 | |
value: 35.961999999999996 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackPhysicsRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 29.875 | |
- type: map_at_10 | |
value: 40.458 | |
- type: map_at_100 | |
value: 41.772 | |
- type: map_at_1000 | |
value: 41.882999999999996 | |
- type: map_at_3 | |
value: 37.086999999999996 | |
- type: map_at_5 | |
value: 39.153 | |
- type: mrr_at_1 | |
value: 36.381 | |
- type: mrr_at_10 | |
value: 46.190999999999995 | |
- type: mrr_at_100 | |
value: 46.983999999999995 | |
- type: mrr_at_1000 | |
value: 47.032000000000004 | |
- type: mrr_at_3 | |
value: 43.486999999999995 | |
- type: mrr_at_5 | |
value: 45.249 | |
- type: ndcg_at_1 | |
value: 36.381 | |
- type: ndcg_at_10 | |
value: 46.602 | |
- type: ndcg_at_100 | |
value: 51.885999999999996 | |
- type: ndcg_at_1000 | |
value: 53.895 | |
- type: ndcg_at_3 | |
value: 41.155 | |
- type: ndcg_at_5 | |
value: 44.182 | |
- type: precision_at_1 | |
value: 36.381 | |
- type: precision_at_10 | |
value: 8.402 | |
- type: precision_at_100 | |
value: 1.278 | |
- type: precision_at_1000 | |
value: 0.16199999999999998 | |
- type: precision_at_3 | |
value: 19.346 | |
- type: precision_at_5 | |
value: 14.09 | |
- type: recall_at_1 | |
value: 29.875 | |
- type: recall_at_10 | |
value: 59.065999999999995 | |
- type: recall_at_100 | |
value: 80.923 | |
- type: recall_at_1000 | |
value: 93.927 | |
- type: recall_at_3 | |
value: 44.462 | |
- type: recall_at_5 | |
value: 51.89 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackProgrammersRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 24.94 | |
- type: map_at_10 | |
value: 35.125 | |
- type: map_at_100 | |
value: 36.476 | |
- type: map_at_1000 | |
value: 36.579 | |
- type: map_at_3 | |
value: 31.840000000000003 | |
- type: map_at_5 | |
value: 33.647 | |
- type: mrr_at_1 | |
value: 30.936000000000003 | |
- type: mrr_at_10 | |
value: 40.637 | |
- type: mrr_at_100 | |
value: 41.471000000000004 | |
- type: mrr_at_1000 | |
value: 41.525 | |
- type: mrr_at_3 | |
value: 38.013999999999996 | |
- type: mrr_at_5 | |
value: 39.469 | |
- type: ndcg_at_1 | |
value: 30.936000000000003 | |
- type: ndcg_at_10 | |
value: 41.295 | |
- type: ndcg_at_100 | |
value: 46.92 | |
- type: ndcg_at_1000 | |
value: 49.183 | |
- type: ndcg_at_3 | |
value: 35.811 | |
- type: ndcg_at_5 | |
value: 38.306000000000004 | |
- type: precision_at_1 | |
value: 30.936000000000003 | |
- type: precision_at_10 | |
value: 7.728 | |
- type: precision_at_100 | |
value: 1.226 | |
- type: precision_at_1000 | |
value: 0.158 | |
- type: precision_at_3 | |
value: 17.237 | |
- type: precision_at_5 | |
value: 12.42 | |
- type: recall_at_1 | |
value: 24.94 | |
- type: recall_at_10 | |
value: 54.235 | |
- type: recall_at_100 | |
value: 78.314 | |
- type: recall_at_1000 | |
value: 93.973 | |
- type: recall_at_3 | |
value: 38.925 | |
- type: recall_at_5 | |
value: 45.505 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 26.250833333333333 | |
- type: map_at_10 | |
value: 35.46875 | |
- type: map_at_100 | |
value: 36.667 | |
- type: map_at_1000 | |
value: 36.78025 | |
- type: map_at_3 | |
value: 32.56733333333334 | |
- type: map_at_5 | |
value: 34.20333333333333 | |
- type: mrr_at_1 | |
value: 30.8945 | |
- type: mrr_at_10 | |
value: 39.636833333333335 | |
- type: mrr_at_100 | |
value: 40.46508333333333 | |
- type: mrr_at_1000 | |
value: 40.521249999999995 | |
- type: mrr_at_3 | |
value: 37.140166666666666 | |
- type: mrr_at_5 | |
value: 38.60999999999999 | |
- type: ndcg_at_1 | |
value: 30.8945 | |
- type: ndcg_at_10 | |
value: 40.93441666666667 | |
- type: ndcg_at_100 | |
value: 46.062416666666664 | |
- type: ndcg_at_1000 | |
value: 48.28341666666667 | |
- type: ndcg_at_3 | |
value: 35.97575 | |
- type: ndcg_at_5 | |
value: 38.3785 | |
- type: precision_at_1 | |
value: 30.8945 | |
- type: precision_at_10 | |
value: 7.180250000000001 | |
- type: precision_at_100 | |
value: 1.1468333333333334 | |
- type: precision_at_1000 | |
value: 0.15283333333333332 | |
- type: precision_at_3 | |
value: 16.525583333333334 | |
- type: precision_at_5 | |
value: 11.798333333333332 | |
- type: recall_at_1 | |
value: 26.250833333333333 | |
- type: recall_at_10 | |
value: 52.96108333333333 | |
- type: recall_at_100 | |
value: 75.45908333333334 | |
- type: recall_at_1000 | |
value: 90.73924999999998 | |
- type: recall_at_3 | |
value: 39.25483333333333 | |
- type: recall_at_5 | |
value: 45.37950000000001 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackStatsRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 24.595 | |
- type: map_at_10 | |
value: 31.747999999999998 | |
- type: map_at_100 | |
value: 32.62 | |
- type: map_at_1000 | |
value: 32.713 | |
- type: map_at_3 | |
value: 29.48 | |
- type: map_at_5 | |
value: 30.635 | |
- type: mrr_at_1 | |
value: 27.607 | |
- type: mrr_at_10 | |
value: 34.449000000000005 | |
- type: mrr_at_100 | |
value: 35.182 | |
- type: mrr_at_1000 | |
value: 35.254000000000005 | |
- type: mrr_at_3 | |
value: 32.413 | |
- type: mrr_at_5 | |
value: 33.372 | |
- type: ndcg_at_1 | |
value: 27.607 | |
- type: ndcg_at_10 | |
value: 36.041000000000004 | |
- type: ndcg_at_100 | |
value: 40.514 | |
- type: ndcg_at_1000 | |
value: 42.851 | |
- type: ndcg_at_3 | |
value: 31.689 | |
- type: ndcg_at_5 | |
value: 33.479 | |
- type: precision_at_1 | |
value: 27.607 | |
- type: precision_at_10 | |
value: 5.66 | |
- type: precision_at_100 | |
value: 0.868 | |
- type: precision_at_1000 | |
value: 0.11299999999999999 | |
- type: precision_at_3 | |
value: 13.446 | |
- type: precision_at_5 | |
value: 9.264 | |
- type: recall_at_1 | |
value: 24.595 | |
- type: recall_at_10 | |
value: 46.79 | |
- type: recall_at_100 | |
value: 67.413 | |
- type: recall_at_1000 | |
value: 84.753 | |
- type: recall_at_3 | |
value: 34.644999999999996 | |
- type: recall_at_5 | |
value: 39.09 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackTexRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 17.333000000000002 | |
- type: map_at_10 | |
value: 24.427 | |
- type: map_at_100 | |
value: 25.576 | |
- type: map_at_1000 | |
value: 25.692999999999998 | |
- type: map_at_3 | |
value: 22.002 | |
- type: map_at_5 | |
value: 23.249 | |
- type: mrr_at_1 | |
value: 20.716 | |
- type: mrr_at_10 | |
value: 28.072000000000003 | |
- type: mrr_at_100 | |
value: 29.067 | |
- type: mrr_at_1000 | |
value: 29.137 | |
- type: mrr_at_3 | |
value: 25.832 | |
- type: mrr_at_5 | |
value: 27.045 | |
- type: ndcg_at_1 | |
value: 20.716 | |
- type: ndcg_at_10 | |
value: 29.109 | |
- type: ndcg_at_100 | |
value: 34.797 | |
- type: ndcg_at_1000 | |
value: 37.503 | |
- type: ndcg_at_3 | |
value: 24.668 | |
- type: ndcg_at_5 | |
value: 26.552999999999997 | |
- type: precision_at_1 | |
value: 20.716 | |
- type: precision_at_10 | |
value: 5.351 | |
- type: precision_at_100 | |
value: 0.955 | |
- type: precision_at_1000 | |
value: 0.136 | |
- type: precision_at_3 | |
value: 11.584999999999999 | |
- type: precision_at_5 | |
value: 8.362 | |
- type: recall_at_1 | |
value: 17.333000000000002 | |
- type: recall_at_10 | |
value: 39.604 | |
- type: recall_at_100 | |
value: 65.525 | |
- type: recall_at_1000 | |
value: 84.651 | |
- type: recall_at_3 | |
value: 27.199 | |
- type: recall_at_5 | |
value: 32.019 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackUnixRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 26.342 | |
- type: map_at_10 | |
value: 35.349000000000004 | |
- type: map_at_100 | |
value: 36.443 | |
- type: map_at_1000 | |
value: 36.548 | |
- type: map_at_3 | |
value: 32.307 | |
- type: map_at_5 | |
value: 34.164 | |
- type: mrr_at_1 | |
value: 31.063000000000002 | |
- type: mrr_at_10 | |
value: 39.703 | |
- type: mrr_at_100 | |
value: 40.555 | |
- type: mrr_at_1000 | |
value: 40.614 | |
- type: mrr_at_3 | |
value: 37.141999999999996 | |
- type: mrr_at_5 | |
value: 38.812000000000005 | |
- type: ndcg_at_1 | |
value: 31.063000000000002 | |
- type: ndcg_at_10 | |
value: 40.873 | |
- type: ndcg_at_100 | |
value: 45.896 | |
- type: ndcg_at_1000 | |
value: 48.205999999999996 | |
- type: ndcg_at_3 | |
value: 35.522 | |
- type: ndcg_at_5 | |
value: 38.419 | |
- type: precision_at_1 | |
value: 31.063000000000002 | |
- type: precision_at_10 | |
value: 6.866 | |
- type: precision_at_100 | |
value: 1.053 | |
- type: precision_at_1000 | |
value: 0.13699999999999998 | |
- type: precision_at_3 | |
value: 16.014 | |
- type: precision_at_5 | |
value: 11.604000000000001 | |
- type: recall_at_1 | |
value: 26.342 | |
- type: recall_at_10 | |
value: 53.40200000000001 | |
- type: recall_at_100 | |
value: 75.251 | |
- type: recall_at_1000 | |
value: 91.13799999999999 | |
- type: recall_at_3 | |
value: 39.103 | |
- type: recall_at_5 | |
value: 46.357 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackWebmastersRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 23.71 | |
- type: map_at_10 | |
value: 32.153999999999996 | |
- type: map_at_100 | |
value: 33.821 | |
- type: map_at_1000 | |
value: 34.034 | |
- type: map_at_3 | |
value: 29.376 | |
- type: map_at_5 | |
value: 30.878 | |
- type: mrr_at_1 | |
value: 28.458 | |
- type: mrr_at_10 | |
value: 36.775999999999996 | |
- type: mrr_at_100 | |
value: 37.804 | |
- type: mrr_at_1000 | |
value: 37.858999999999995 | |
- type: mrr_at_3 | |
value: 34.123999999999995 | |
- type: mrr_at_5 | |
value: 35.596 | |
- type: ndcg_at_1 | |
value: 28.458 | |
- type: ndcg_at_10 | |
value: 37.858999999999995 | |
- type: ndcg_at_100 | |
value: 44.194 | |
- type: ndcg_at_1000 | |
value: 46.744 | |
- type: ndcg_at_3 | |
value: 33.348 | |
- type: ndcg_at_5 | |
value: 35.448 | |
- type: precision_at_1 | |
value: 28.458 | |
- type: precision_at_10 | |
value: 7.4510000000000005 | |
- type: precision_at_100 | |
value: 1.5 | |
- type: precision_at_1000 | |
value: 0.23700000000000002 | |
- type: precision_at_3 | |
value: 15.809999999999999 | |
- type: precision_at_5 | |
value: 11.462 | |
- type: recall_at_1 | |
value: 23.71 | |
- type: recall_at_10 | |
value: 48.272999999999996 | |
- type: recall_at_100 | |
value: 77.134 | |
- type: recall_at_1000 | |
value: 93.001 | |
- type: recall_at_3 | |
value: 35.480000000000004 | |
- type: recall_at_5 | |
value: 41.19 | |
- task: | |
type: Retrieval | |
dataset: | |
type: BeIR/cqadupstack | |
name: MTEB CQADupstackWordpressRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 21.331 | |
- type: map_at_10 | |
value: 28.926000000000002 | |
- type: map_at_100 | |
value: 29.855999999999998 | |
- type: map_at_1000 | |
value: 29.957 | |
- type: map_at_3 | |
value: 26.395999999999997 | |
- type: map_at_5 | |
value: 27.933000000000003 | |
- type: mrr_at_1 | |
value: 23.105 | |
- type: mrr_at_10 | |
value: 31.008000000000003 | |
- type: mrr_at_100 | |
value: 31.819999999999997 | |
- type: mrr_at_1000 | |
value: 31.887999999999998 | |
- type: mrr_at_3 | |
value: 28.466 | |
- type: mrr_at_5 | |
value: 30.203000000000003 | |
- type: ndcg_at_1 | |
value: 23.105 | |
- type: ndcg_at_10 | |
value: 33.635999999999996 | |
- type: ndcg_at_100 | |
value: 38.277 | |
- type: ndcg_at_1000 | |
value: 40.907 | |
- type: ndcg_at_3 | |
value: 28.791 | |
- type: ndcg_at_5 | |
value: 31.528 | |
- type: precision_at_1 | |
value: 23.105 | |
- type: precision_at_10 | |
value: 5.323 | |
- type: precision_at_100 | |
value: 0.815 | |
- type: precision_at_1000 | |
value: 0.117 | |
- type: precision_at_3 | |
value: 12.384 | |
- type: precision_at_5 | |
value: 9.02 | |
- type: recall_at_1 | |
value: 21.331 | |
- type: recall_at_10 | |
value: 46.018 | |
- type: recall_at_100 | |
value: 67.364 | |
- type: recall_at_1000 | |
value: 86.97 | |
- type: recall_at_3 | |
value: 33.395 | |
- type: recall_at_5 | |
value: 39.931 | |
- task: | |
type: Retrieval | |
dataset: | |
type: climate-fever | |
name: MTEB ClimateFEVER | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 17.011000000000003 | |
- type: map_at_10 | |
value: 28.816999999999997 | |
- type: map_at_100 | |
value: 30.761 | |
- type: map_at_1000 | |
value: 30.958000000000002 | |
- type: map_at_3 | |
value: 24.044999999999998 | |
- type: map_at_5 | |
value: 26.557 | |
- type: mrr_at_1 | |
value: 38.696999999999996 | |
- type: mrr_at_10 | |
value: 50.464 | |
- type: mrr_at_100 | |
value: 51.193999999999996 | |
- type: mrr_at_1000 | |
value: 51.219 | |
- type: mrr_at_3 | |
value: 47.339999999999996 | |
- type: mrr_at_5 | |
value: 49.346000000000004 | |
- type: ndcg_at_1 | |
value: 38.696999999999996 | |
- type: ndcg_at_10 | |
value: 38.53 | |
- type: ndcg_at_100 | |
value: 45.525 | |
- type: ndcg_at_1000 | |
value: 48.685 | |
- type: ndcg_at_3 | |
value: 32.282 | |
- type: ndcg_at_5 | |
value: 34.482 | |
- type: precision_at_1 | |
value: 38.696999999999996 | |
- type: precision_at_10 | |
value: 11.895999999999999 | |
- type: precision_at_100 | |
value: 1.95 | |
- type: precision_at_1000 | |
value: 0.254 | |
- type: precision_at_3 | |
value: 24.038999999999998 | |
- type: precision_at_5 | |
value: 18.332 | |
- type: recall_at_1 | |
value: 17.011000000000003 | |
- type: recall_at_10 | |
value: 44.452999999999996 | |
- type: recall_at_100 | |
value: 68.223 | |
- type: recall_at_1000 | |
value: 85.653 | |
- type: recall_at_3 | |
value: 28.784 | |
- type: recall_at_5 | |
value: 35.66 | |
- task: | |
type: Retrieval | |
dataset: | |
type: dbpedia-entity | |
name: MTEB DBPedia | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 9.516 | |
- type: map_at_10 | |
value: 21.439 | |
- type: map_at_100 | |
value: 31.517 | |
- type: map_at_1000 | |
value: 33.267 | |
- type: map_at_3 | |
value: 15.004999999999999 | |
- type: map_at_5 | |
value: 17.793999999999997 | |
- type: mrr_at_1 | |
value: 71.25 | |
- type: mrr_at_10 | |
value: 79.071 | |
- type: mrr_at_100 | |
value: 79.325 | |
- type: mrr_at_1000 | |
value: 79.33 | |
- type: mrr_at_3 | |
value: 77.708 | |
- type: mrr_at_5 | |
value: 78.546 | |
- type: ndcg_at_1 | |
value: 58.62500000000001 | |
- type: ndcg_at_10 | |
value: 44.889 | |
- type: ndcg_at_100 | |
value: 50.536 | |
- type: ndcg_at_1000 | |
value: 57.724 | |
- type: ndcg_at_3 | |
value: 49.32 | |
- type: ndcg_at_5 | |
value: 46.775 | |
- type: precision_at_1 | |
value: 71.25 | |
- type: precision_at_10 | |
value: 36.175000000000004 | |
- type: precision_at_100 | |
value: 11.940000000000001 | |
- type: precision_at_1000 | |
value: 2.178 | |
- type: precision_at_3 | |
value: 53.583000000000006 | |
- type: precision_at_5 | |
value: 45.550000000000004 | |
- type: recall_at_1 | |
value: 9.516 | |
- type: recall_at_10 | |
value: 27.028000000000002 | |
- type: recall_at_100 | |
value: 57.581 | |
- type: recall_at_1000 | |
value: 80.623 | |
- type: recall_at_3 | |
value: 16.313 | |
- type: recall_at_5 | |
value: 20.674 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/emotion | |
name: MTEB EmotionClassification | |
config: default | |
split: test | |
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 | |
metrics: | |
- type: accuracy | |
value: 51.74999999999999 | |
- type: f1 | |
value: 46.46706502669774 | |
- task: | |
type: Retrieval | |
dataset: | |
type: fever | |
name: MTEB FEVER | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 77.266 | |
- type: map_at_10 | |
value: 84.89999999999999 | |
- type: map_at_100 | |
value: 85.109 | |
- type: map_at_1000 | |
value: 85.123 | |
- type: map_at_3 | |
value: 83.898 | |
- type: map_at_5 | |
value: 84.541 | |
- type: mrr_at_1 | |
value: 83.138 | |
- type: mrr_at_10 | |
value: 89.37 | |
- type: mrr_at_100 | |
value: 89.432 | |
- type: mrr_at_1000 | |
value: 89.43299999999999 | |
- type: mrr_at_3 | |
value: 88.836 | |
- type: mrr_at_5 | |
value: 89.21 | |
- type: ndcg_at_1 | |
value: 83.138 | |
- type: ndcg_at_10 | |
value: 88.244 | |
- type: ndcg_at_100 | |
value: 88.98700000000001 | |
- type: ndcg_at_1000 | |
value: 89.21900000000001 | |
- type: ndcg_at_3 | |
value: 86.825 | |
- type: ndcg_at_5 | |
value: 87.636 | |
- type: precision_at_1 | |
value: 83.138 | |
- type: precision_at_10 | |
value: 10.47 | |
- type: precision_at_100 | |
value: 1.1079999999999999 | |
- type: precision_at_1000 | |
value: 0.11499999999999999 | |
- type: precision_at_3 | |
value: 32.933 | |
- type: precision_at_5 | |
value: 20.36 | |
- type: recall_at_1 | |
value: 77.266 | |
- type: recall_at_10 | |
value: 94.063 | |
- type: recall_at_100 | |
value: 96.993 | |
- type: recall_at_1000 | |
value: 98.414 | |
- type: recall_at_3 | |
value: 90.228 | |
- type: recall_at_5 | |
value: 92.328 | |
- task: | |
type: Retrieval | |
dataset: | |
type: fiqa | |
name: MTEB FiQA2018 | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 22.319 | |
- type: map_at_10 | |
value: 36.943 | |
- type: map_at_100 | |
value: 38.951 | |
- type: map_at_1000 | |
value: 39.114 | |
- type: map_at_3 | |
value: 32.82 | |
- type: map_at_5 | |
value: 34.945 | |
- type: mrr_at_1 | |
value: 44.135999999999996 | |
- type: mrr_at_10 | |
value: 53.071999999999996 | |
- type: mrr_at_100 | |
value: 53.87 | |
- type: mrr_at_1000 | |
value: 53.90200000000001 | |
- type: mrr_at_3 | |
value: 50.77199999999999 | |
- type: mrr_at_5 | |
value: 52.129999999999995 | |
- type: ndcg_at_1 | |
value: 44.135999999999996 | |
- type: ndcg_at_10 | |
value: 44.836 | |
- type: ndcg_at_100 | |
value: 51.754 | |
- type: ndcg_at_1000 | |
value: 54.36 | |
- type: ndcg_at_3 | |
value: 41.658 | |
- type: ndcg_at_5 | |
value: 42.354 | |
- type: precision_at_1 | |
value: 44.135999999999996 | |
- type: precision_at_10 | |
value: 12.284 | |
- type: precision_at_100 | |
value: 1.952 | |
- type: precision_at_1000 | |
value: 0.242 | |
- type: precision_at_3 | |
value: 27.828999999999997 | |
- type: precision_at_5 | |
value: 20.093 | |
- type: recall_at_1 | |
value: 22.319 | |
- type: recall_at_10 | |
value: 51.528 | |
- type: recall_at_100 | |
value: 76.70700000000001 | |
- type: recall_at_1000 | |
value: 92.143 | |
- type: recall_at_3 | |
value: 38.641 | |
- type: recall_at_5 | |
value: 43.653999999999996 | |
- task: | |
type: Retrieval | |
dataset: | |
type: hotpotqa | |
name: MTEB HotpotQA | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 40.182 | |
- type: map_at_10 | |
value: 65.146 | |
- type: map_at_100 | |
value: 66.023 | |
- type: map_at_1000 | |
value: 66.078 | |
- type: map_at_3 | |
value: 61.617999999999995 | |
- type: map_at_5 | |
value: 63.82299999999999 | |
- type: mrr_at_1 | |
value: 80.365 | |
- type: mrr_at_10 | |
value: 85.79 | |
- type: mrr_at_100 | |
value: 85.963 | |
- type: mrr_at_1000 | |
value: 85.968 | |
- type: mrr_at_3 | |
value: 84.952 | |
- type: mrr_at_5 | |
value: 85.503 | |
- type: ndcg_at_1 | |
value: 80.365 | |
- type: ndcg_at_10 | |
value: 73.13499999999999 | |
- type: ndcg_at_100 | |
value: 76.133 | |
- type: ndcg_at_1000 | |
value: 77.151 | |
- type: ndcg_at_3 | |
value: 68.255 | |
- type: ndcg_at_5 | |
value: 70.978 | |
- type: precision_at_1 | |
value: 80.365 | |
- type: precision_at_10 | |
value: 15.359 | |
- type: precision_at_100 | |
value: 1.7690000000000001 | |
- type: precision_at_1000 | |
value: 0.19 | |
- type: precision_at_3 | |
value: 44.024 | |
- type: precision_at_5 | |
value: 28.555999999999997 | |
- type: recall_at_1 | |
value: 40.182 | |
- type: recall_at_10 | |
value: 76.793 | |
- type: recall_at_100 | |
value: 88.474 | |
- type: recall_at_1000 | |
value: 95.159 | |
- type: recall_at_3 | |
value: 66.036 | |
- type: recall_at_5 | |
value: 71.391 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/imdb | |
name: MTEB ImdbClassification | |
config: default | |
split: test | |
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 | |
metrics: | |
- type: accuracy | |
value: 92.7796 | |
- type: ap | |
value: 89.24883716810874 | |
- type: f1 | |
value: 92.7706903433313 | |
- task: | |
type: Retrieval | |
dataset: | |
type: msmarco | |
name: MTEB MSMARCO | |
config: default | |
split: dev | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 22.016 | |
- type: map_at_10 | |
value: 34.408 | |
- type: map_at_100 | |
value: 35.592 | |
- type: map_at_1000 | |
value: 35.64 | |
- type: map_at_3 | |
value: 30.459999999999997 | |
- type: map_at_5 | |
value: 32.721000000000004 | |
- type: mrr_at_1 | |
value: 22.593 | |
- type: mrr_at_10 | |
value: 34.993 | |
- type: mrr_at_100 | |
value: 36.113 | |
- type: mrr_at_1000 | |
value: 36.156 | |
- type: mrr_at_3 | |
value: 31.101 | |
- type: mrr_at_5 | |
value: 33.364 | |
- type: ndcg_at_1 | |
value: 22.579 | |
- type: ndcg_at_10 | |
value: 41.404999999999994 | |
- type: ndcg_at_100 | |
value: 47.018 | |
- type: ndcg_at_1000 | |
value: 48.211999999999996 | |
- type: ndcg_at_3 | |
value: 33.389 | |
- type: ndcg_at_5 | |
value: 37.425000000000004 | |
- type: precision_at_1 | |
value: 22.579 | |
- type: precision_at_10 | |
value: 6.59 | |
- type: precision_at_100 | |
value: 0.938 | |
- type: precision_at_1000 | |
value: 0.104 | |
- type: precision_at_3 | |
value: 14.241000000000001 | |
- type: precision_at_5 | |
value: 10.59 | |
- type: recall_at_1 | |
value: 22.016 | |
- type: recall_at_10 | |
value: 62.927 | |
- type: recall_at_100 | |
value: 88.72 | |
- type: recall_at_1000 | |
value: 97.80799999999999 | |
- type: recall_at_3 | |
value: 41.229 | |
- type: recall_at_5 | |
value: 50.88 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/mtop_domain | |
name: MTEB MTOPDomainClassification (en) | |
config: en | |
split: test | |
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf | |
metrics: | |
- type: accuracy | |
value: 94.01732786137711 | |
- type: f1 | |
value: 93.76353126402202 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/mtop_intent | |
name: MTEB MTOPIntentClassification (en) | |
config: en | |
split: test | |
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba | |
metrics: | |
- type: accuracy | |
value: 76.91746466028272 | |
- type: f1 | |
value: 57.715651682646765 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/amazon_massive_intent | |
name: MTEB MassiveIntentClassification (en) | |
config: en | |
split: test | |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 | |
metrics: | |
- type: accuracy | |
value: 76.5030262273033 | |
- type: f1 | |
value: 74.6693629986121 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/amazon_massive_scenario | |
name: MTEB MassiveScenarioClassification (en) | |
config: en | |
split: test | |
revision: 7d571f92784cd94a019292a1f45445077d0ef634 | |
metrics: | |
- type: accuracy | |
value: 79.74781439139207 | |
- type: f1 | |
value: 79.96684171018774 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/medrxiv-clustering-p2p | |
name: MTEB MedrxivClusteringP2P | |
config: default | |
split: test | |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 | |
metrics: | |
- type: v_measure | |
value: 33.2156206892017 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/medrxiv-clustering-s2s | |
name: MTEB MedrxivClusteringS2S | |
config: default | |
split: test | |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 | |
metrics: | |
- type: v_measure | |
value: 31.180539484816137 | |
- task: | |
type: Reranking | |
dataset: | |
type: mteb/mind_small | |
name: MTEB MindSmallReranking | |
config: default | |
split: test | |
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 | |
metrics: | |
- type: map | |
value: 32.51125957874274 | |
- type: mrr | |
value: 33.777037359249995 | |
- task: | |
type: Retrieval | |
dataset: | |
type: nfcorpus | |
name: MTEB NFCorpus | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 7.248 | |
- type: map_at_10 | |
value: 15.340000000000002 | |
- type: map_at_100 | |
value: 19.591 | |
- type: map_at_1000 | |
value: 21.187 | |
- type: map_at_3 | |
value: 11.329 | |
- type: map_at_5 | |
value: 13.209999999999999 | |
- type: mrr_at_1 | |
value: 47.678 | |
- type: mrr_at_10 | |
value: 57.493 | |
- type: mrr_at_100 | |
value: 58.038999999999994 | |
- type: mrr_at_1000 | |
value: 58.07 | |
- type: mrr_at_3 | |
value: 55.36600000000001 | |
- type: mrr_at_5 | |
value: 56.635999999999996 | |
- type: ndcg_at_1 | |
value: 46.129999999999995 | |
- type: ndcg_at_10 | |
value: 38.653999999999996 | |
- type: ndcg_at_100 | |
value: 36.288 | |
- type: ndcg_at_1000 | |
value: 44.765 | |
- type: ndcg_at_3 | |
value: 43.553 | |
- type: ndcg_at_5 | |
value: 41.317 | |
- type: precision_at_1 | |
value: 47.368 | |
- type: precision_at_10 | |
value: 28.669 | |
- type: precision_at_100 | |
value: 9.158 | |
- type: precision_at_1000 | |
value: 2.207 | |
- type: precision_at_3 | |
value: 40.97 | |
- type: precision_at_5 | |
value: 35.604 | |
- type: recall_at_1 | |
value: 7.248 | |
- type: recall_at_10 | |
value: 19.46 | |
- type: recall_at_100 | |
value: 37.214000000000006 | |
- type: recall_at_1000 | |
value: 67.64099999999999 | |
- type: recall_at_3 | |
value: 12.025 | |
- type: recall_at_5 | |
value: 15.443999999999999 | |
- task: | |
type: Retrieval | |
dataset: | |
type: nq | |
name: MTEB NQ | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 31.595000000000002 | |
- type: map_at_10 | |
value: 47.815999999999995 | |
- type: map_at_100 | |
value: 48.811 | |
- type: map_at_1000 | |
value: 48.835 | |
- type: map_at_3 | |
value: 43.225 | |
- type: map_at_5 | |
value: 46.017 | |
- type: mrr_at_1 | |
value: 35.689 | |
- type: mrr_at_10 | |
value: 50.341 | |
- type: mrr_at_100 | |
value: 51.044999999999995 | |
- type: mrr_at_1000 | |
value: 51.062 | |
- type: mrr_at_3 | |
value: 46.553 | |
- type: mrr_at_5 | |
value: 48.918 | |
- type: ndcg_at_1 | |
value: 35.66 | |
- type: ndcg_at_10 | |
value: 55.859 | |
- type: ndcg_at_100 | |
value: 59.864 | |
- type: ndcg_at_1000 | |
value: 60.419999999999995 | |
- type: ndcg_at_3 | |
value: 47.371 | |
- type: ndcg_at_5 | |
value: 51.995000000000005 | |
- type: precision_at_1 | |
value: 35.66 | |
- type: precision_at_10 | |
value: 9.27 | |
- type: precision_at_100 | |
value: 1.1520000000000001 | |
- type: precision_at_1000 | |
value: 0.12 | |
- type: precision_at_3 | |
value: 21.63 | |
- type: precision_at_5 | |
value: 15.655 | |
- type: recall_at_1 | |
value: 31.595000000000002 | |
- type: recall_at_10 | |
value: 77.704 | |
- type: recall_at_100 | |
value: 94.774 | |
- type: recall_at_1000 | |
value: 98.919 | |
- type: recall_at_3 | |
value: 56.052 | |
- type: recall_at_5 | |
value: 66.623 | |
- task: | |
type: Retrieval | |
dataset: | |
type: quora | |
name: MTEB QuoraRetrieval | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 71.489 | |
- type: map_at_10 | |
value: 85.411 | |
- type: map_at_100 | |
value: 86.048 | |
- type: map_at_1000 | |
value: 86.064 | |
- type: map_at_3 | |
value: 82.587 | |
- type: map_at_5 | |
value: 84.339 | |
- type: mrr_at_1 | |
value: 82.28 | |
- type: mrr_at_10 | |
value: 88.27199999999999 | |
- type: mrr_at_100 | |
value: 88.362 | |
- type: mrr_at_1000 | |
value: 88.362 | |
- type: mrr_at_3 | |
value: 87.372 | |
- type: mrr_at_5 | |
value: 87.995 | |
- type: ndcg_at_1 | |
value: 82.27 | |
- type: ndcg_at_10 | |
value: 89.023 | |
- type: ndcg_at_100 | |
value: 90.191 | |
- type: ndcg_at_1000 | |
value: 90.266 | |
- type: ndcg_at_3 | |
value: 86.37 | |
- type: ndcg_at_5 | |
value: 87.804 | |
- type: precision_at_1 | |
value: 82.27 | |
- type: precision_at_10 | |
value: 13.469000000000001 | |
- type: precision_at_100 | |
value: 1.533 | |
- type: precision_at_1000 | |
value: 0.157 | |
- type: precision_at_3 | |
value: 37.797 | |
- type: precision_at_5 | |
value: 24.734 | |
- type: recall_at_1 | |
value: 71.489 | |
- type: recall_at_10 | |
value: 95.824 | |
- type: recall_at_100 | |
value: 99.70599999999999 | |
- type: recall_at_1000 | |
value: 99.979 | |
- type: recall_at_3 | |
value: 88.099 | |
- type: recall_at_5 | |
value: 92.285 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/reddit-clustering | |
name: MTEB RedditClustering | |
config: default | |
split: test | |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb | |
metrics: | |
- type: v_measure | |
value: 60.52398807444541 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/reddit-clustering-p2p | |
name: MTEB RedditClusteringP2P | |
config: default | |
split: test | |
revision: 282350215ef01743dc01b456c7f5241fa8937f16 | |
metrics: | |
- type: v_measure | |
value: 65.34855891507871 | |
- task: | |
type: Retrieval | |
dataset: | |
type: scidocs | |
name: MTEB SCIDOCS | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 5.188000000000001 | |
- type: map_at_10 | |
value: 13.987 | |
- type: map_at_100 | |
value: 16.438 | |
- type: map_at_1000 | |
value: 16.829 | |
- type: map_at_3 | |
value: 9.767000000000001 | |
- type: map_at_5 | |
value: 11.912 | |
- type: mrr_at_1 | |
value: 25.6 | |
- type: mrr_at_10 | |
value: 37.744 | |
- type: mrr_at_100 | |
value: 38.847 | |
- type: mrr_at_1000 | |
value: 38.894 | |
- type: mrr_at_3 | |
value: 34.166999999999994 | |
- type: mrr_at_5 | |
value: 36.207 | |
- type: ndcg_at_1 | |
value: 25.6 | |
- type: ndcg_at_10 | |
value: 22.980999999999998 | |
- type: ndcg_at_100 | |
value: 32.039 | |
- type: ndcg_at_1000 | |
value: 38.157000000000004 | |
- type: ndcg_at_3 | |
value: 21.567 | |
- type: ndcg_at_5 | |
value: 19.070999999999998 | |
- type: precision_at_1 | |
value: 25.6 | |
- type: precision_at_10 | |
value: 12.02 | |
- type: precision_at_100 | |
value: 2.5100000000000002 | |
- type: precision_at_1000 | |
value: 0.396 | |
- type: precision_at_3 | |
value: 20.333000000000002 | |
- type: precision_at_5 | |
value: 16.98 | |
- type: recall_at_1 | |
value: 5.188000000000001 | |
- type: recall_at_10 | |
value: 24.372 | |
- type: recall_at_100 | |
value: 50.934999999999995 | |
- type: recall_at_1000 | |
value: 80.477 | |
- type: recall_at_3 | |
value: 12.363 | |
- type: recall_at_5 | |
value: 17.203 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sickr-sts | |
name: MTEB SICK-R | |
config: default | |
split: test | |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee | |
metrics: | |
- type: cos_sim_pearson | |
value: 87.24286275535398 | |
- type: cos_sim_spearman | |
value: 82.62333770991818 | |
- type: euclidean_pearson | |
value: 84.60353717637284 | |
- type: euclidean_spearman | |
value: 82.32990108810047 | |
- type: manhattan_pearson | |
value: 84.6089049738196 | |
- type: manhattan_spearman | |
value: 82.33361785438936 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts12-sts | |
name: MTEB STS12 | |
config: default | |
split: test | |
revision: a0d554a64d88156834ff5ae9920b964011b16384 | |
metrics: | |
- type: cos_sim_pearson | |
value: 87.87428858503165 | |
- type: cos_sim_spearman | |
value: 79.09145886519929 | |
- type: euclidean_pearson | |
value: 86.42669231664036 | |
- type: euclidean_spearman | |
value: 80.03127375435449 | |
- type: manhattan_pearson | |
value: 86.41330338305022 | |
- type: manhattan_spearman | |
value: 80.02492538673368 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts13-sts | |
name: MTEB STS13 | |
config: default | |
split: test | |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca | |
metrics: | |
- type: cos_sim_pearson | |
value: 88.67912277322645 | |
- type: cos_sim_spearman | |
value: 89.6171319711762 | |
- type: euclidean_pearson | |
value: 86.56571917398725 | |
- type: euclidean_spearman | |
value: 87.71216907898948 | |
- type: manhattan_pearson | |
value: 86.57459050182473 | |
- type: manhattan_spearman | |
value: 87.71916648349993 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts14-sts | |
name: MTEB STS14 | |
config: default | |
split: test | |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 | |
metrics: | |
- type: cos_sim_pearson | |
value: 86.71957379085862 | |
- type: cos_sim_spearman | |
value: 85.01784075851465 | |
- type: euclidean_pearson | |
value: 84.7407848472801 | |
- type: euclidean_spearman | |
value: 84.61063091345538 | |
- type: manhattan_pearson | |
value: 84.71494352494403 | |
- type: manhattan_spearman | |
value: 84.58772077604254 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts15-sts | |
name: MTEB STS15 | |
config: default | |
split: test | |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 | |
metrics: | |
- type: cos_sim_pearson | |
value: 88.40508326325175 | |
- type: cos_sim_spearman | |
value: 89.50912897763186 | |
- type: euclidean_pearson | |
value: 87.82349070086627 | |
- type: euclidean_spearman | |
value: 88.44179162727521 | |
- type: manhattan_pearson | |
value: 87.80181927025595 | |
- type: manhattan_spearman | |
value: 88.43205129636243 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts16-sts | |
name: MTEB STS16 | |
config: default | |
split: test | |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 | |
metrics: | |
- type: cos_sim_pearson | |
value: 85.35846741715478 | |
- type: cos_sim_spearman | |
value: 86.61172476741842 | |
- type: euclidean_pearson | |
value: 84.60123125491637 | |
- type: euclidean_spearman | |
value: 85.3001948141827 | |
- type: manhattan_pearson | |
value: 84.56231142658329 | |
- type: manhattan_spearman | |
value: 85.23579900798813 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts17-crosslingual-sts | |
name: MTEB STS17 (en-en) | |
config: en-en | |
split: test | |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d | |
metrics: | |
- type: cos_sim_pearson | |
value: 88.94539129818824 | |
- type: cos_sim_spearman | |
value: 88.99349064256742 | |
- type: euclidean_pearson | |
value: 88.7142444640351 | |
- type: euclidean_spearman | |
value: 88.34120813505011 | |
- type: manhattan_pearson | |
value: 88.70363008238084 | |
- type: manhattan_spearman | |
value: 88.31952816956954 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/sts22-crosslingual-sts | |
name: MTEB STS22 (en) | |
config: en | |
split: test | |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 | |
metrics: | |
- type: cos_sim_pearson | |
value: 68.29910260369893 | |
- type: cos_sim_spearman | |
value: 68.79263346213466 | |
- type: euclidean_pearson | |
value: 68.41627521422252 | |
- type: euclidean_spearman | |
value: 66.61602587398579 | |
- type: manhattan_pearson | |
value: 68.49402183447361 | |
- type: manhattan_spearman | |
value: 66.80157792354453 | |
- task: | |
type: STS | |
dataset: | |
type: mteb/stsbenchmark-sts | |
name: MTEB STSBenchmark | |
config: default | |
split: test | |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 | |
metrics: | |
- type: cos_sim_pearson | |
value: 87.43703906343708 | |
- type: cos_sim_spearman | |
value: 89.06081805093662 | |
- type: euclidean_pearson | |
value: 87.48311456299662 | |
- type: euclidean_spearman | |
value: 88.07417597580013 | |
- type: manhattan_pearson | |
value: 87.48202249768894 | |
- type: manhattan_spearman | |
value: 88.04758031111642 | |
- task: | |
type: Reranking | |
dataset: | |
type: mteb/scidocs-reranking | |
name: MTEB SciDocsRR | |
config: default | |
split: test | |
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab | |
metrics: | |
- type: map | |
value: 87.49080620485203 | |
- type: mrr | |
value: 96.19145378949301 | |
- task: | |
type: Retrieval | |
dataset: | |
type: scifact | |
name: MTEB SciFact | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 59.317 | |
- type: map_at_10 | |
value: 69.296 | |
- type: map_at_100 | |
value: 69.738 | |
- type: map_at_1000 | |
value: 69.759 | |
- type: map_at_3 | |
value: 66.12599999999999 | |
- type: map_at_5 | |
value: 67.532 | |
- type: mrr_at_1 | |
value: 62 | |
- type: mrr_at_10 | |
value: 70.176 | |
- type: mrr_at_100 | |
value: 70.565 | |
- type: mrr_at_1000 | |
value: 70.583 | |
- type: mrr_at_3 | |
value: 67.833 | |
- type: mrr_at_5 | |
value: 68.93299999999999 | |
- type: ndcg_at_1 | |
value: 62 | |
- type: ndcg_at_10 | |
value: 74.069 | |
- type: ndcg_at_100 | |
value: 76.037 | |
- type: ndcg_at_1000 | |
value: 76.467 | |
- type: ndcg_at_3 | |
value: 68.628 | |
- type: ndcg_at_5 | |
value: 70.57600000000001 | |
- type: precision_at_1 | |
value: 62 | |
- type: precision_at_10 | |
value: 10 | |
- type: precision_at_100 | |
value: 1.097 | |
- type: precision_at_1000 | |
value: 0.11299999999999999 | |
- type: precision_at_3 | |
value: 26.667 | |
- type: precision_at_5 | |
value: 17.4 | |
- type: recall_at_1 | |
value: 59.317 | |
- type: recall_at_10 | |
value: 87.822 | |
- type: recall_at_100 | |
value: 96.833 | |
- type: recall_at_1000 | |
value: 100 | |
- type: recall_at_3 | |
value: 73.06099999999999 | |
- type: recall_at_5 | |
value: 77.928 | |
- task: | |
type: PairClassification | |
dataset: | |
type: mteb/sprintduplicatequestions-pairclassification | |
name: MTEB SprintDuplicateQuestions | |
config: default | |
split: test | |
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 | |
metrics: | |
- type: cos_sim_accuracy | |
value: 99.88910891089108 | |
- type: cos_sim_ap | |
value: 97.236958456951 | |
- type: cos_sim_f1 | |
value: 94.39999999999999 | |
- type: cos_sim_precision | |
value: 94.39999999999999 | |
- type: cos_sim_recall | |
value: 94.39999999999999 | |
- type: dot_accuracy | |
value: 99.82574257425742 | |
- type: dot_ap | |
value: 94.94344759441888 | |
- type: dot_f1 | |
value: 91.17352056168507 | |
- type: dot_precision | |
value: 91.44869215291752 | |
- type: dot_recall | |
value: 90.9 | |
- type: euclidean_accuracy | |
value: 99.88415841584158 | |
- type: euclidean_ap | |
value: 97.2044250782305 | |
- type: euclidean_f1 | |
value: 94.210786739238 | |
- type: euclidean_precision | |
value: 93.24191968658178 | |
- type: euclidean_recall | |
value: 95.19999999999999 | |
- type: manhattan_accuracy | |
value: 99.88613861386139 | |
- type: manhattan_ap | |
value: 97.20683205497689 | |
- type: manhattan_f1 | |
value: 94.2643391521197 | |
- type: manhattan_precision | |
value: 94.02985074626866 | |
- type: manhattan_recall | |
value: 94.5 | |
- type: max_accuracy | |
value: 99.88910891089108 | |
- type: max_ap | |
value: 97.236958456951 | |
- type: max_f1 | |
value: 94.39999999999999 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/stackexchange-clustering | |
name: MTEB StackExchangeClustering | |
config: default | |
split: test | |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 | |
metrics: | |
- type: v_measure | |
value: 66.53940781726187 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/stackexchange-clustering-p2p | |
name: MTEB StackExchangeClusteringP2P | |
config: default | |
split: test | |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 | |
metrics: | |
- type: v_measure | |
value: 36.71865011295108 | |
- task: | |
type: Reranking | |
dataset: | |
type: mteb/stackoverflowdupquestions-reranking | |
name: MTEB StackOverflowDupQuestions | |
config: default | |
split: test | |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 | |
metrics: | |
- type: map | |
value: 55.3218674533331 | |
- type: mrr | |
value: 56.28279910449028 | |
- task: | |
type: Summarization | |
dataset: | |
type: mteb/summeval | |
name: MTEB SummEval | |
config: default | |
split: test | |
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c | |
metrics: | |
- type: cos_sim_pearson | |
value: 30.723915667479673 | |
- type: cos_sim_spearman | |
value: 32.029070449745234 | |
- type: dot_pearson | |
value: 28.864944212481454 | |
- type: dot_spearman | |
value: 27.939266999596725 | |
- task: | |
type: Retrieval | |
dataset: | |
type: trec-covid | |
name: MTEB TRECCOVID | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 0.231 | |
- type: map_at_10 | |
value: 1.949 | |
- type: map_at_100 | |
value: 10.023 | |
- type: map_at_1000 | |
value: 23.485 | |
- type: map_at_3 | |
value: 0.652 | |
- type: map_at_5 | |
value: 1.054 | |
- type: mrr_at_1 | |
value: 86 | |
- type: mrr_at_10 | |
value: 92.067 | |
- type: mrr_at_100 | |
value: 92.067 | |
- type: mrr_at_1000 | |
value: 92.067 | |
- type: mrr_at_3 | |
value: 91.667 | |
- type: mrr_at_5 | |
value: 92.067 | |
- type: ndcg_at_1 | |
value: 83 | |
- type: ndcg_at_10 | |
value: 76.32900000000001 | |
- type: ndcg_at_100 | |
value: 54.662 | |
- type: ndcg_at_1000 | |
value: 48.062 | |
- type: ndcg_at_3 | |
value: 81.827 | |
- type: ndcg_at_5 | |
value: 80.664 | |
- type: precision_at_1 | |
value: 86 | |
- type: precision_at_10 | |
value: 80 | |
- type: precision_at_100 | |
value: 55.48 | |
- type: precision_at_1000 | |
value: 20.938000000000002 | |
- type: precision_at_3 | |
value: 85.333 | |
- type: precision_at_5 | |
value: 84.39999999999999 | |
- type: recall_at_1 | |
value: 0.231 | |
- type: recall_at_10 | |
value: 2.158 | |
- type: recall_at_100 | |
value: 13.344000000000001 | |
- type: recall_at_1000 | |
value: 44.31 | |
- type: recall_at_3 | |
value: 0.6779999999999999 | |
- type: recall_at_5 | |
value: 1.13 | |
- task: | |
type: Retrieval | |
dataset: | |
type: webis-touche2020 | |
name: MTEB Touche2020 | |
config: default | |
split: test | |
revision: None | |
metrics: | |
- type: map_at_1 | |
value: 2.524 | |
- type: map_at_10 | |
value: 10.183 | |
- type: map_at_100 | |
value: 16.625 | |
- type: map_at_1000 | |
value: 18.017 | |
- type: map_at_3 | |
value: 5.169 | |
- type: map_at_5 | |
value: 6.772 | |
- type: mrr_at_1 | |
value: 32.653 | |
- type: mrr_at_10 | |
value: 47.128 | |
- type: mrr_at_100 | |
value: 48.458 | |
- type: mrr_at_1000 | |
value: 48.473 | |
- type: mrr_at_3 | |
value: 44.897999999999996 | |
- type: mrr_at_5 | |
value: 45.306000000000004 | |
- type: ndcg_at_1 | |
value: 30.612000000000002 | |
- type: ndcg_at_10 | |
value: 24.928 | |
- type: ndcg_at_100 | |
value: 37.613 | |
- type: ndcg_at_1000 | |
value: 48.528 | |
- type: ndcg_at_3 | |
value: 28.829 | |
- type: ndcg_at_5 | |
value: 25.237 | |
- type: precision_at_1 | |
value: 32.653 | |
- type: precision_at_10 | |
value: 22.448999999999998 | |
- type: precision_at_100 | |
value: 8.02 | |
- type: precision_at_1000 | |
value: 1.537 | |
- type: precision_at_3 | |
value: 30.612000000000002 | |
- type: precision_at_5 | |
value: 24.490000000000002 | |
- type: recall_at_1 | |
value: 2.524 | |
- type: recall_at_10 | |
value: 16.38 | |
- type: recall_at_100 | |
value: 49.529 | |
- type: recall_at_1000 | |
value: 83.598 | |
- type: recall_at_3 | |
value: 6.411 | |
- type: recall_at_5 | |
value: 8.932 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/toxic_conversations_50k | |
name: MTEB ToxicConversationsClassification | |
config: default | |
split: test | |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c | |
metrics: | |
- type: accuracy | |
value: 71.09020000000001 | |
- type: ap | |
value: 14.451710060978993 | |
- type: f1 | |
value: 54.7874410609049 | |
- task: | |
type: Classification | |
dataset: | |
type: mteb/tweet_sentiment_extraction | |
name: MTEB TweetSentimentExtractionClassification | |
config: default | |
split: test | |
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a | |
metrics: | |
- type: accuracy | |
value: 59.745331069609506 | |
- type: f1 | |
value: 60.08387848592697 | |
- task: | |
type: Clustering | |
dataset: | |
type: mteb/twentynewsgroups-clustering | |
name: MTEB TwentyNewsgroupsClustering | |
config: default | |
split: test | |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 | |
metrics: | |
- type: v_measure | |
value: 51.71549485462037 | |
- task: | |
type: PairClassification | |
dataset: | |
type: mteb/twittersemeval2015-pairclassification | |
name: MTEB TwitterSemEval2015 | |
config: default | |
split: test | |
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 | |
metrics: | |
- type: cos_sim_accuracy | |
value: 87.39345532574357 | |
- type: cos_sim_ap | |
value: 78.16796549696478 | |
- type: cos_sim_f1 | |
value: 71.27713276123171 | |
- type: cos_sim_precision | |
value: 68.3115626511853 | |
- type: cos_sim_recall | |
value: 74.51187335092348 | |
- type: dot_accuracy | |
value: 85.12248912201228 | |
- type: dot_ap | |
value: 69.26039256107077 | |
- type: dot_f1 | |
value: 65.04294321240867 | |
- type: dot_precision | |
value: 63.251059586138126 | |
- type: dot_recall | |
value: 66.93931398416886 | |
- type: euclidean_accuracy | |
value: 87.07754664123503 | |
- type: euclidean_ap | |
value: 77.7872176038945 | |
- type: euclidean_f1 | |
value: 70.85587801278899 | |
- type: euclidean_precision | |
value: 66.3519115614924 | |
- type: euclidean_recall | |
value: 76.01583113456465 | |
- type: manhattan_accuracy | |
value: 87.07754664123503 | |
- type: manhattan_ap | |
value: 77.7341400185556 | |
- type: manhattan_f1 | |
value: 70.80310880829015 | |
- type: manhattan_precision | |
value: 69.54198473282443 | |
- type: manhattan_recall | |
value: 72.1108179419525 | |
- type: max_accuracy | |
value: 87.39345532574357 | |
- type: max_ap | |
value: 78.16796549696478 | |
- type: max_f1 | |
value: 71.27713276123171 | |
- task: | |
type: PairClassification | |
dataset: | |
type: mteb/twitterurlcorpus-pairclassification | |
name: MTEB TwitterURLCorpus | |
config: default | |
split: test | |
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf | |
metrics: | |
- type: cos_sim_accuracy | |
value: 89.09457833663213 | |
- type: cos_sim_ap | |
value: 86.33024314706873 | |
- type: cos_sim_f1 | |
value: 78.59623733719248 | |
- type: cos_sim_precision | |
value: 74.13322413322413 | |
- type: cos_sim_recall | |
value: 83.63104404065291 | |
- type: dot_accuracy | |
value: 88.3086894089339 | |
- type: dot_ap | |
value: 83.92225241805097 | |
- type: dot_f1 | |
value: 76.8721826377781 | |
- type: dot_precision | |
value: 72.8168044077135 | |
- type: dot_recall | |
value: 81.40591315060055 | |
- type: euclidean_accuracy | |
value: 88.77052043311213 | |
- type: euclidean_ap | |
value: 85.7410710218755 | |
- type: euclidean_f1 | |
value: 77.97705489398781 | |
- type: euclidean_precision | |
value: 73.77713657598241 | |
- type: euclidean_recall | |
value: 82.68401601478288 | |
- type: manhattan_accuracy | |
value: 88.73753250281368 | |
- type: manhattan_ap | |
value: 85.72867199072802 | |
- type: manhattan_f1 | |
value: 77.89774182922812 | |
- type: manhattan_precision | |
value: 74.23787931635857 | |
- type: manhattan_recall | |
value: 81.93717277486911 | |
- type: max_accuracy | |
value: 89.09457833663213 | |
- type: max_ap | |
value: 86.33024314706873 | |
- type: max_f1 | |
value: 78.59623733719248 | |
license: mit | |
language: | |
- en | |
# [Universal AnglE Embedding](https://github.com/SeanLee97/AnglE) | |
Follow us on: | |
- GitHub: https://github.com/SeanLee97/AnglE. | |
- Arxiv: https://arxiv.org/abs/2309.12871 | |
🔥 Our universal English sentence embedding `WhereIsAI/UAE-Large-V1` achieves **SOTA** on the [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) with an average score of 64.64! | |
 | |
# Usage | |
```bash | |
python -m pip install -U angle-emb | |
``` | |
1) Non-Retrieval Tasks | |
```python | |
from angle_emb import AnglE | |
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda() | |
vec = angle.encode('hello world', to_numpy=True) | |
print(vec) | |
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True) | |
print(vecs) | |
``` | |
2) Retrieval Tasks | |
For retrieval purposes, please use the prompt `Prompts.C`. | |
```python | |
from angle_emb import AnglE, Prompts | |
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda() | |
angle.set_prompt(prompt=Prompts.C) | |
vec = angle.encode({'text': 'hello world'}, to_numpy=True) | |
print(vec) | |
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True) | |
print(vecs) | |
``` | |
# Citation | |
If you use our pre-trained models, welcome to support us by citing our work: | |
``` | |
@article{li2023angle, | |
title={AnglE-optimized Text Embeddings}, | |
author={Li, Xianming and Li, Jing}, | |
journal={arXiv preprint arXiv:2309.12871}, | |
year={2023} | |
} | |
``` |